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1. Introduction 

1.1 Background 

Accessibility is an important topic in urban research because it describes how easily 
people can reach the services needed for daily life. According to Pearce et al. (2006), differences 
in access to food, transportation, and public services can influence health, well-being, and social 
equity. In walkable neighborhoods, even small variations in the location of essential services can 
greatly affect daily routines. The area around the University of Southern California (USC) is a 
student-centered environment where most movement happens on foot. This makes accessibility 
to markets, restaurants, and bus stops especially important for people living in this community. 

Spatial accessibility is often measured using floating catchment area models. According 
to Luo and Wang (2003), the 2SFCA method gives a clear way to evaluate the balance between 
supply and demand. Later studies introduced distance-decay weights to better represent real 
travel behavior on foot. According to Luo and Qi (2009), the E2SFCA method reduces the 
weight of facilities located farther away, which produces more realistic accessibility patterns. 
Micro-scale accessibility studies also help reveal fine spatial differences. According to Jamtsho 
and Corner (2014), small study areas make it possible to identify inequalities that are not visible 
in large regional analyses. 

Because the USC neighborhood contains many services within short walking distances, it 
is suitable for building-level analysis. According to Delamater (2013), accessibility can change 
significantly even within small walking ranges, which makes micro-scale analysis valuable for 
understanding local conditions. These ideas form the foundation of our research. 

1.2 Study Objectives 

The objective of our study is to measure accessibility to three categories of daily-life 
resources which are markets, restaurants, and bus stops. We focus on the USC Department of 
Public Safety (DPS) area and use the E2SFCA method to identify patterns of access within the 
neighborhood and explore how easily residents and students can reach these essential services. 

1.3 Research Questions 

Our study addresses the following research questions. 

1.​ What are the spatial patterns of accessibility for markets, restaurants, and bus stops 
within the DPS area. 

2.​ Do the three resource types follow similar patterns or show different forms of spatial 
clustering. 

These questions guide our analysis and help us understand how the walkable environment 
functions for people who live and study near USC. 

1.4 Significance 
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This study is significant because it provides detailed information about accessibility at a 
micro scale. Most large-scale studies cannot capture small variations that directly affect students 
and residents. By focusing on building-level accessibility, our research highlights local strengths 
and weaknesses in the availability of daily services. The findings can support planning decisions, 
improvements to pedestrian infrastructure, and discussions about resource distribution in the 
USC neighborhood. The results also demonstrate how E2SFCA can be used for small, dense 
communities where walking is the primary travel mode. 

2. Study Area 

2.1 Macro Area (LA County) 

As shown in Figure 1, the macro study area is Los Angeles County. This region provides 
a broader context for understanding the urban environment surrounding USC. According to the 
Los Angeles County GIS Portal (2020), the county contains thousands of census tracts with 
different levels of population density, service access, and built environment characteristics. 
Including the macro area helps introduce the regional setting before narrowing down to the local 
neighborhood around USC. 

 
Figure 1. Los Angeles County boundary defining the macro study area. 

2.2 Micro Area (USC DPS) 
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As shown in Figure 2, the micro study area is the USC DPS boundary, which covers 
student housing complexes, academic buildings, restaurants, markets, and multiple bus stops. 
The area is compact and highly walkable, making it suitable for micro-scale accessibility 
analysis. The DPS boundary defines the area where students and residents most frequently walk 
in their daily routines. This localized focus allows us to study accessibility at the building level. 

 
Figure 2. USC DPS patrol area defining the micro study area. 

2.3 Why DPS is suitable for micro-scale accessibility 

The DPS area is appropriate for this research for three main reasons. 

1.​ It includes a variety of essential services located within short walking distances. 
2.​ It contains a dense network of buildings and streets, which supports detailed accessibility 

modeling. 
3.​ Walking is the dominant mode of travel in this neighborhood, which aligns well with the 

E2SFCA method that uses distance-decay functions to represent walking behavior.  
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According to Jamtsho and Corner (2014), compact and walkable areas are ideal for fine-scale 
accessibility research. Overall, these factors make the DPS area a suitable environment for 
building-level analysis. 

3. Data 

3.1 Data Sources (dataset table) 

Dataset Name Description Source Link 

LA_Census_Tract.shp 2020 Census tracts of Los Angeles County https://egis-lacounty.hub.arcg
is.com 

LA_Population.csv 2023 ACS 5-year population estimates for 
LA County 

https://api.census.gov 

usc_dps_boundary.shp USC Department of Public Safety 
patrol-area polygon (DPS area) 

https://dps.usc.edu/patrol 

usc_dps_markets.shp Market and supermarket locations within 
USC DPS area, extracted from OSM 
using osmnx 

OSM (via Python OSMnx) 

usc_dps_restaurants.shp Restaurant locations within USC DPS 
area, extracted from OSM using osmnx 

OSM (via Python OSMnx) 

usc_dps_buildings.shp Building footprint polygons within USC 
DPS area, extracted from OSM 

OSM (via Python OSMnx) 

USC_DPS_BusStop.shp Metro Bus Stops clipped to DPS boundary https://developer.metro.net/gi
s-data/ 

LA_boundary_no_islan
d.shp 

Los Angeles County boundary with 
islands removed 

LA County GIS hub 

Table 1. Summary of Datasets and Sources 

As shown as Table 1, our project combines demographic, urban infrastructure, and 
administrative boundary datasets to support the analysis of accessibility within the USC 
Department of Public Safety (DPS) area. The population data are derived from the 2023 
American Community Survey (ACS) 5-year estimates, which provide tract-level population 
counts for all of Los Angeles County. Census tracts and the LA County boundary serve as 
fundamental reference layers for spatial alignment. Facility data, including markets, restaurants, 
and building footprints, originate from OpenStreetMap. These datasets capture local amenities 
and the physical structure of the built environment within the DPS area. Metro bus stop locations 
are sourced from the official Los Angeles Metro GIS portal, providing an accurate inventory of 

https://egis-lacounty.hub.arcgis.com/
https://egis-lacounty.hub.arcgis.com/
https://api.census.gov/
https://dps.usc.edu/patrol
https://developer.metro.net/gis-data/
https://developer.metro.net/gis-data/
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transit access points. The USC DPS patrol-area polygon defines the geographic extent of our 
study and serves as the clipping boundary for all facility layers. Together, these datasets allow us 
to model both supply and demand for urban services and compute accessibility across 
census-defined population units. 

3.2 Data Format and Attributes 

All datasets used in the project are stored in ESRI Shapefile or CSV format. Spatial 
datasets contain geometry fields representing points or polygons. The LA Census Tract layer 
includes unique GEOID codes and basic administrative attributes. The population CSV file 
contains tract-level population counts that were later joined to the spatial tract layer. The 
OSM-based facility layers include descriptive attributes such as amenity, shop, name, and 
address information, depending on the feature type. Building footprints are stored as Polygon 
geometries and include general OSM tags that characterize building usage when available. The 
bus stop dataset contains stop identifiers, names, and categorical information relevant to public 
transit. To support the accessibility analysis, we added standardized fields such as SupplyID and 
Supply_Capacity across all supply layers. Each layer was converted into a consistent projected 
coordinate system (UTM Zone 11N) to ensure accurate distance calculations. 

3.3 Validation Data 

We performed internal validation by visually inspecting all spatial layers within the study 
boundary. Census tracts, facility points, and building footprints were checked for proper 
alignment and completeness. Population counts were reviewed to ensure that the join between 
the ACS dataset and the Census Tract shapefile was accurate based on the GEOID field. For the 
OSM-based datasets, we verified that markets, restaurants, and building footprints appeared in 
plausible real-world locations by comparing them to basemap imagery. The bus stop dataset was 
cross-checked with the Metro-provided spatial layer to ensure that only stops within the DPS 
boundary were included in the final dataset. This combination of spatial verification and attribute 
checking ensured that the datasets were sufficiently reliable for accessibility modeling. 

3.4 Limitations of the Datasets 

While the datasets are appropriate for our analysis, several limitations exist. 
OpenStreetMap data rely on community contributions and may be incomplete or inconsistent, 
especially for smaller facilities that are less frequently mapped. Some restaurants or markets may 
be missing, misclassified, or lack attribute information. Census tract boundaries are relatively 
large and may not perfectly represent population distribution within the DPS area. As a result, 
assigning population counts to a smaller custom study area introduces some spatial uncertainty. 
Additionally, ACS population estimates include sampling error, which propagates into the 
demand calculations. Building footprint data represent physical structures but do not include 
information about building function, occupancy, or population counts. The Metro bus stop 
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dataset represents stop locations but not service frequency or ridership, meaning our analysis 
captures spatial availability rather than service quality. Despite these limitations, the combined 
datasets provide a robust basis for modeling accessibility and identifying spatial patterns within 
the USC DPS area. 

4. Data Wrangling 

4.1 Data Preprocessing (Macro area: LA County) 

We began the macro level preprocessing by preparing a clean and accurate boundary for 
Los Angeles County. We first downloaded the national county polygons from the U.S. Census 
TIGER database and selected the polygon that represents Los Angeles County. The original 
polygon included several offshore areas such as Catalina Island, which were not needed for our 
analysis. To solve this issue, we used a Python script to keep only the largest polygon and 
remove the extra offshore components. The resulting boundary file, named 
LA_County_no_islands.shp, is shown in Figure 1. After creating a clean county boundary, We 
downloaded the 2020 Census Tracts from the LA County GIS Hub. These census tracts were 
then clipped to the cleaned county boundary using the Clip tool in ArcGIS Pro. The output, 
named CensusTracts_LA_Clip, contained the correct geometry and spatial extent for all census 
tracts within Los Angeles County. This clipped layer is presented in Figure 3. 

 

Figure 3. Clipped 2020 Census Tracts Within Los Angeles County 
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Next, we prepared the demographic information needed for the analysis. We downloaded 
the 2023 ACS five year population estimates (Table B01003) from the Census API. The 
population table contained a GEO_ID field that stored long identification strings. We created a 
new field called GEOID_clean and used Python to extract the last eleven characters of each 
GEO_ID so that it would match the standard census tract format. 

To complete the join, we created a corresponding GEOID field inside the 
CensusTracts_LA_Clip layer. The field was generated by combining the state FIPS code for 
California, the county FIPS code for Los Angeles County, and the tract code stored in the CT20 
attribute. Once both datasets shared the same identifier format, we performed an attribute join in 
ArcGIS Pro using GEOID from the census tracts and GEOID_clean from the population table. 
The join successfully added the B01003 population estimates to each census tract, as shown in 
Figure 4. 

 

Figure 4. Joined Census Tracts With 2023 ACS Population Attributes 

After completing the join, we calculated population density at the tract level. We added a 
new field named PopDensity (type: Double) and used a Python expression to divide total 
population (B01003_001E) by the tract area in square kilometers: 

float(!B01003_001E!) / (!Shape_Area! / 1000000) 

The calculated PopDensity field successfully appeared in the attribute table with realistic 
values that ranged from very low density in rural tracts to extremely high density in urban areas. 
We then visualized population density in ArcGIS Pro using Graduated Colors with the Natural 
Breaks (Jenks) classification and five classes. This method provides a meaningful way to 
highlight areas of high and low density across the county. The final population density map is 
presented in Figure 5. 
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Figure 5. Population Density of Los Angeles County Census Tracts (2023) 

We produced a county scale population density map to illustrate how residents are 
distributed across Los Angeles County. As shown in Figure 5, census tracts are symbolized using 
a Natural Breaks (Jenks) classification based on persons per square kilometer. Low-density 
census tracts, symbolized in light yellow, tend to appear in the less developed outer areas of Los 
Angeles County, particularly toward the north and other fringe zones. Higher density tracts, 
shown in darker orange and red, concentrate in central and southern urban areas such as 
Downtown Los Angeles and surrounding neighborhoods. 

4.2 Data Preprocessing (Micro area: DPS) 
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For the micro-area analysis, we first prepared all geospatial datasets required to describe 
the built environment and urban activity patterns within the USC Department of Public Safety 
(DPS) patrol area. Our preprocessing began with obtaining the official DPS boundary in polygon 
format. The boundary was projected to the WGS 84 geographic coordinate system to ensure 
compatibility with additional datasets derived from OpenStreetMap (OSM) and the Los Angeles 
Metro GIS portal. We used this boundary as the spatial extent for all subsequent data extraction 
and clipping procedures. 

To obtain micro-scale amenities within the DPS area, we collected point-based features 
directly from OSM using Python. We worked in Google Colab and installed the osmnx and 
geopandas libraries to automate data acquisition. After reading the DPS boundary shapefile and 
converting it into a polygon geometry, we queried OSM for specific feature types. For markets, 
we extracted all points tagged as “supermarket,” “convenience,” or “marketplace.” For 
restaurants, we queried the attribute amenity = restaurant. Because OSM often returns mixed 
geometry types, we filtered each dataset to retain only point geometries to avoid write errors 
when exporting to shapefiles. We applied a similar process to download buildings, except in this 
case we extracted polygons and multipolygons associated with the tag building = True, 
producing a detailed footprint layer of the built environment. In all cases, the cleaned geometries 
were exported to shapefiles and prepared for visualization in ArcGIS Pro. 

Public transit features were obtained from the Los Angeles Metro developer GIS portal, 
where we downloaded the most recent countywide bus stop database. Each bus stop contains 
attributes listing the routes that serve it, and the dataset represents each stop as a unique point. 
Because our analysis focuses exclusively on the DPS patrol area, we clipped the countywide bus 
stop layer using the DPS boundary in ArcGIS Pro. This produced a refined subset of transit stops 
located entirely within or immediately adjacent to the patrol zone. 

After preprocessing all datasets, we visualized them together in ArcGIS Pro to verify 
spatial accuracy and to establish a clear spatial understanding of the DPS environment. The 
resulting map, Figure 6 shows the distribution of buildings, markets, restaurants, and bus stops 
relative to the DPS boundary. Several spatial patterns emerge from the figure. Buildings are 
densely clustered around the university core, reflecting concentrated academic and residential 
functions. Restaurants and markets appear along major corridors such as Figueroa Street and 
Jefferson Boulevard, indicating highly active commercial zones. Bus stops are evenly distributed 
along primary streets, suggesting strong transit accessibility throughout the patrol area. These 
spatial relationships illustrate that the DPS micro-area is a compact, high-density urban 
environment with substantial pedestrian movement, diverse amenities, and a well-connected 
transit network. 
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Figure 6. Urban Facilities and Transit Features within the USC DPS Area 

4.3 Demand Data Preparation and Calculation 

In this part of the study, we prepared two types of demand data. The first type represents 
the residential population within the DPS area, and the second type represents buildings that may 
require access to public facilities. The overall goal was to create a consistent set of demand 
points that could support the accessibility analysis in later sections. To estimate the population 
within the DPS boundary, we started with the census tracts covering Los Angeles County. Each 
tract contained total population counts and was assigned an additional field called orig_area, 
which stores the original tract area in square meters. We then clipped the census tracts using the 
DPS boundary to extract only the portions of tracts that fall inside the study area. The output 
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layer preserved the demographic attributes and provided a reduced geometry representing the 
portion inside the DPS boundary, as illustrated in Figure 7. For each clipped tract segment, we 
calculated its area and stored it as clipped_area. We then joined the original tract area back to the 
clipped layer using the shared GEOID field. This allowed us to compute the proportion of each 
tract that is located within the DPS boundary. The ratio of clipped_area to orig_area was used to 
estimate the local population, stored in the attribute local_pop. The calculation follows the 
formula: 

 
This procedure provides a consistent estimate of population distributed across partially 

intersecting census tracts. Figure 7 shows the clipped census tracts and their calculated fields, 
including orig_area, clipped_area, and local_pop. 

 

Figure 7. Clipped census tracts within the DPS area and calculated population fields (orig_area, 
clipped_area, local_pop) 

​ In addition to population demand, we also created a spatial representation of buildings 
within the DPS area. The building footprints extracted from OpenStreetMap were originally 
polygons. Since later accessibility and matching steps in the workflow require point-based 
demand units, we converted all building polygons into centroid points. The conversion was done 
using the Feature To Point tool with the "Inside" option. This resulted in a building point layer 
where each point represents a single building footprint. Figure 8 presents the distribution of these 
centroids across the DPS area. 
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Figure 8. Building centroids generated from OSM building footprints 

​ The OSM building dataset includes more than 30 detailed building types. Because the full 
set of categories is too granular for accessibility analysis, we grouped the buildings into five 
major classes. We created a new field, building_group, and used a Python expression in the Field 
Calculator to assign each building to one of the categories: Residential, Commercial, 
Institutional, Recreational, or Other. Categories such as apartments, houses, and dormitories were 
grouped as Residential, while types such as schools, universities, hospitals, museums, and other 
public service buildings were grouped as Institutional. After the classification, the resulting map 
displayed a clear spatial distribution of different building types across the DPS area. Figure 9 



13 

illustrates the final building classification map, which summarizes the five groups and their 
locations. 

 
Figure 9. Building type classification map showing five generalized building groups 

​ Through these steps, we prepared a complete demand dataset that includes both residential 
population estimates and building demand points. These layers form the basis for subsequent analyses of 
accessibility and spatial matching. 

4.4 Supply Preparation (Markets, Restaurants, Bus Stops) 

In this part of the project, we prepared the supply datasets that represent food and service 
access within the USC DPS Area. These supply layers include markets, restaurants, and bus 
stops, which were obtained from OpenStreetMap and imported as point features in ArcGIS Pro. 
To ensure spatial consistency across all datasets, we exported each feature class using a unified 
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projected coordinate system. We selected NAD 1983 UTM Zone 11N because it provides 
appropriate units in meters and supports accurate distance-based analysis, which is necessary for 
the 2SFCA method used later in the workflow. 

Each supply dataset was processed individually. We used the Export Features tool and 
saved the outputs as Markets_UTM, Restaurants_UTM, and BusStops_UTM. After exporting, 
we verified that all layers correctly aligned with the USC DPS boundary and were fully 
contained within the study area. This step ensured that no supply point remained in an 
unprojected coordinate system or outside the analysis zone. 

Figure 10 shows the distribution of markets, restaurants, and bus stops within the DPS 
Area after projection. The map illustrates the relative clustering of supply locations, with 
restaurants and markets concentrated near major streets and around the USC campus, while bus 
stops are more evenly distributed across the area. The consistent coordinate system confirms that 
all three supply layers are ready for subsequent accessibility and catchment analyses. 

 
Figure 10. Supply Locations within the USC DPS Area (NAD 1983 UTM Zone 11N) 
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4.5 Distance Preparation for E2FCA 

To prepare the distance inputs required for the E2FCA accessibility model, we created a 
set of near-distance tables that quantify the proximity between every building within the DPS 
area and the available supply locations. This step allows us to identify the closest market, 
restaurant, and bus stop for each building. Because all datasets were already projected into the 
NAD 1983 UTM Zone 11N coordinate system, the distances generated by ArcGIS Pro are 
expressed in meters, which is appropriate for later calculations in Step 1 and Step 2 of the 
E2FCA method. 

We used the Generate Near Table tool to build three separate distance matrices: one for 
buildings to markets, one for buildings to restaurants, and one for buildings to bus stops. For 
each run, the buildings served as the input layer and the selected supply layer served as the near 
features. We set the search radius to 1000 meters and enabled the location output option so that 
the resulting tables would include both the coordinates of the demand points and the coordinates 
of their closest supply points. The tool also returned a unique ID for each nearest feature and the 
Euclidean distance between the building and that supply location. 

Figures 11 through 13 summarize the results of this distance preparation step. Figure 11 
shows the near-distance table generated for markets. Figure 12 displays the distance table for 
restaurants, and Figure 13 presents the results for bus stops. Together, these three datasets 
establish the demand-to-supply relationships that are required for computing the Gaussian-based 
distance decay, the supply-to-demand ratios, and the final accessibility scores in the E2FCA 
workflow. 

 
Figure 11. Output of the Generate Near Table for Markets (Near_Markets) 
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Figure 12. Output of the Generate Near Table for Restaurants (Near_Restaurants) 

 
Figure 13. Output of the Generate Near Table for Bus Stops (Near_BusStops) 

5. Methodology 

5.1 Study Area Distance Representation 

To represent the baseline distance structure of the study area, we calculated the Euclidean 
distance from every building point to the nearest restaurant, market, and bus stop within the USC 
DPS boundary. All datasets were first projected into the NAD 1983 UTM Zone 11N coordinate 
system to ensure that distance calculations were expressed in meters, which provides a consistent 
and reliable basis for accessibility modeling. We then applied ArcGIS Pro’s Near tool to generate 
distance attributes for each building point. These values were symbolized using graduated colors 
with Natural Breaks to highlight variations in proximity across the DPS area. 

Figure 14 illustrates the distance from each building point to the nearest restaurant. The 
map shows clear spatial variations, with clusters of shorter distances concentrated along Vermont 
Avenue and Exposition Boulevard, while greater distances appear in the northern and 
southeastern residential blocks. Figure 15 presents the distance to the nearest market. Compared 
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to restaurants, markets are less evenly distributed, which results in a broader range of distances 
across the study area. Figure 16 displays the distance to the nearest bus stop. Bus stops are more 
densely distributed compared to food sources, which results in generally shorter and more 
uniform distances, especially around Expo Park and the residential blocks near Jefferson 
Boulevard. 

 

Figure 14. Distance to the Nearest Restaurant within the DPS Area. 
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Figure 15. Distance to the Nearest Market within the DPS Area. 
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Figure 16. Distance to the Nearest Bus Stop within the DPS Area. 

These distance maps form the core spatial framework for the later E2FCA analysis. They 
illustrate how the locations of key services differ throughout the DPS neighborhood and establish 
the basic distance patterns that shape supply–demand relationships and overall accessibility 
outcomes. 

5.2 Supply–Demand Definition 
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To implement the E2SFCA model, we first prepared demand and supply layers in a 
consistent structure that allows the computation of demand-to-supply relationships. The demand 
layer represents buildings within the DPS area, while the supply layers include markets, 
restaurants, and bus stops. Each layer was processed to ensure that every point contains a unique 
identifier and a defined capacity value. 

For the demand side, we used the Buildings_Points_Project layer and assigned each 
building a unique DemandID and a population value (POP). Since detailed household counts or 
residential population data are not available at the building level for the DPS area, we adopted a 
standard assumption used in many local-accessibility studies by assigning each building a POP 
value of 1. This allows the model to treat each building as an equal unit of demand. The resulting 
attribute structure is shown in Figure 17, where both DemandID and POP fields are successfully 
added to all building points. 

 

Figure 17. Demand Layer Structure for Buildings within the DPS Area 

For the supply side, we prepared three layers: Markets_UTM, Restaurants_UTM, and 
BusStops_UTM. Each supply point was assigned a unique SupplyID, which ensures that all 
supply points can be referenced consistently during the calculation of supply-to-demand ratios in 
Step 1 of the E2FCA method. We also added a Supply_Capacity field to each layer and assigned 
a value of 1 to all records. This assumption reflects equal service potential for all markets, 
restaurants, and bus stops within the DPS area. The updated supply tables, shown in Figures 17, 
18, and 19, confirm that each point contains the required fields for the E2FCA model. 

 
Figure 18. Supply Structure for Restaurants within the DPS Area 
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Figure 19. Supply Structure for Markets within the DPS Area 

 
Figure 20. Supply Structure for Bus Stops within the DPS Area 

With DemandID, POP, SupplyID, and Supply_Capacity consistently defined across all 
four datasets, the study area is now fully prepared for calculating distance-decay–weighted 
accessibility in Sections 5.3 through 5.6. The structured preparation in this section ensures that 
demand and supply can be matched appropriately when computing service ratios and 
accessibility scores in the next steps of the methodology. 

5.3 Gaussian Distance Decay Function 

In our project, our team applied a Gaussian distance decay function to model how 
accessibility decreases as distance increases. This function assigns higher weights to supply 
locations that are closer to each demand point and gradually reduces the influence of facilities 
that are farther away. The Gaussian curve is smooth and continuous, which allows it to capture 
realistic spatial interactions within the DPS area. We used the standard Gaussian decay 
expression as below. 

 
where d is the network-based or Euclidean distance between each supply point and each 

demand point, and λ is the decay parameter. A smaller λ causes the weight to drop rapidly with 
distance, which results in a localized accessibility pattern. A larger λ produces a slower decline 
and reflects a broader catchment area. 

In our analysis, we selected a bandwidth that reflects walkable distances within the DPS 
community. The Gaussian weights produced here were used in both steps of the E2FCA method. 
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During Step 1, the decay function weights each demand point when computing the 
supply-to-demand ratio. During Step 2, the function weights each supply ratio when calculating 
the final accessibility score for all residential buildings. 

This approach ensures that accessibility results reflect realistic travel behavior, where 
nearby resources contribute more strongly to local accessibility than distant ones. 

5.4 E2FCA Step 1: Supply-to-Demand Ratio (Rj) 

In the beginning step of the Enhanced 2FSCA method, we identified the set of demand 
locations that fall within a predefined search radius of every supply point. This step provides the 
foundation for calculating the supply-to-demand ratio Rj. To implement this process, we used 
Python and several scientific libraries including GeoPandas for spatial data handling, NumPy for 
numerical operations, SciPy’s cKDTree for efficient nearest neighbor search, and Matplotlib for 
visualization. All supply datasets from markets, restaurants, and bus stops were merged into a 
single supply layer and matched with the building dataset that represents the demand side. All 
points were projected to the same UTM coordinate system to ensure correct distance 
computation in meters. 

A spatial index was built using cKDTree, which computes Euclidean distances between 
points. For each supply point j, the tree identified all demand points i located within an 800 
meter search radius. This radius matches the scale of the USC DPS study area and is widely used 
in urban accessibility research involving walking distance. The neighborhood search follows the 
standard E2SFCA distance rule formulated as: 

d(i, j) ≤ d₀ 

where d(i, j) is the Euclidean distance between demand i and supply j, and d₀ is the catchment 
threshold. 

Two visualizations were produced to illustrate this step. Figure 21 presents the spatial 
arrangement of all demand points and the combined supply points across the study area. Figure 
22 displays the complete set of supply catchments generated by the KDTree search. Each gray 
line represents a connection between a supply point and all demand locations within its 
catchment radius. This figure confirms that the algorithm correctly captured local clusters and 
distance-based relationships across the network. Together, these results validate that the 
supply-side catchments were constructed correctly and are ready for computing Rj in the next 
step. 
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Figure 21. Supply and Demand Distribution used in E2FCA Step 1 

 

Figure 22. Distance Preparation: Supply–Demand Connections 
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5.5 E2FCA Step 2: Accessibility Score (Ai) 

The next step of the E2SFCA method computes the accessibility score for each demand 
location. This score, denoted as Ai, represents the cumulative opportunity available to a given 
building after accounting for all accessible supply locations and the effect of distance decay. The 
analysis was implemented entirely in Python for consistency with the previous steps. Libraries 
used include GeoPandas for spatial data handling, NumPy and pandas for data processing, 
SciPy’s cKDTree for efficient spatial queries, and Matplotlib for visualization. 

In this step, each demand point searches for all supply locations within the distance 
threshold of 800 meters. The pre-computed supply to demand ratio Rj from Step 1 is then 
assigned to each demand point using a Gaussian decay function based on the distance between 
the demand and supply points. The decay function used is 

 
where d is the Euclidean distance and σ controls the rate of decay. For this study, σ was 

set to 300 meters to reflect typical walking distance conditions in urban Los Angeles. The 
accessibility score for each demand point is calculated as: 

 
which aggregates the weighted influence of all accessible supply sites. 

Figure 23 illustrates the spatial distribution of accessibility across all buildings in the 
study area. Demand points are symbolized using a continuous color gradient where higher 
accessibility scores appear in yellow and lower values appear in dark blue. Supply locations are 
shown as red points to highlight their spatial influence on surrounding neighborhoods. The map 
reveals clear spatial clustering of accessibility, with central portions of the USC DPS area 
achieving higher scores due to denser supply coverage and favorable proximity patterns. 
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Figure 23. E2FCA Step 2 Accessibility Scores (Ai) 

To support interpretation, summary statistics of the computed accessibility values were 
generated. The distribution shows a mean accessibility score of approximately 9.60 and ranges 
from 2.44 to 22.86 as shown as the below. These statistics provide a quantitative description of 
spatial inequality in accessibility and serve as the foundation for the comparisons presented in 
the Results section. 

===== Accessibility (Ai) Statistics ===== 
count    3707.000000 
mean        9.596756 
std         4.423208 
min         2.441762 
25%         5.814084 
50%         9.694189 
75%        12.476670 
max        22.864956 

Name: Ai, dtype: float64 

5.6 Composite Accessibility Index (CAI) 

To provide an integrated measure of overall accessibility within the USC DPS study area, 
we computed a Composite Accessibility Index (CAI) by combining the accessibility scores 
generated for markets, restaurants, and bus stops. The CAI captures the joint contribution of 
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multiple daily-life resources and enables a more holistic interpretation of spatial inequality in 
access. The analysis was carried out in Python using pandas, numpy, geopandas, and matplotlib. 
The workflow followed the same logic used in earlier E2FCA steps, and the final index was 
derived after normalizing and aggregating the three accessibility components. 

We first applied min-max normalization to each accessibility layer to ensure that markets, 
restaurants, and bus stops contributed comparably to the final composite score. The 
normalization process used the following formula. 

 

where A′ represents the normalized accessibility value and A is the original E2FCA score. 
Following normalization, the Composite Accessibility Index was computed using a simple 
average of the three resource-based scores: 

 

This approach treats all resources equally and aligns with the goal of identifying general 
accessibility advantages rather than prioritizing a single resource type. However, Figure 24 
shows the statistical distribution of the resulting CAI values. The distribution is right-skewed, 
with most values concentrated between 0.05 and 0.30. The summary statistics also support this 
pattern. The mean CAI is approximately 0.23, and the third quartile reaches 0.31, indicating a 
relatively small proportion of locations with high overall accessibility. These characteristics are 
consistent with urban environments where access to multiple resources tends to cluster around 
central corridors. 

Spatial patterns of the CAI are illustrated in Figure 25. Higher composite scores appear 
around the central east region of the study area, where market density, restaurant density, and bus 
stop availability overlap. Lower CAI values dominate the western and southern edges, which are 
farther from the major resource clusters. The combined representation highlights areas with 
strong multimodal access as well as neighborhoods that may benefit from future improvements 
in local services. 

To help interpret how each resource contributed to the composite measure, Figure 26 
compares the spatial distribution of market, restaurant, bus stop accessibility, and the final CAI. 
The CAI map aligns closely with the spatial gradients found in the bus stop and restaurant layers, 
suggesting that these two resources exert stronger influence on the overall accessibility pattern in 
the DPS area. The market accessibility layer shows similar but slightly narrower clusters, and its 
inclusion in the composite index helps create a more stable and balanced measure across the 
entire study region. 

6. Exploratory Data Analysis 

6.1 Building Distribution 
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We conducted an exploratory data analysis to characterize the spatial structure of the built 
environment and the placement of key resources in the USC DPS area before performing the 
accessibility computations. The goal of this stage was to establish the spatial context in which 
accessibility is produced and to describe the underlying patterns that influence later results. 
Building locations, markets, restaurants, and bus stops were extracted from OpenStreetMap and 
processed entirely in Python using GeoPandas, Shapely, and OSMnx. These libraries allowed us 
to retrieve point geometries, reproject them into the projected coordinate system used in the 
accessibility model, and visualize their spatial patterns. The preprocessing also included 
coordinate transformation using the GeoPandas function .to_crs(), which ensured that all input 
layers were aligned in the same projected space for distance-based calculations. 

The spatial distribution of buildings provides the foundational representation of the built 
environment. The building points we retrieved from OpenStreetMap showed a regular block-like 
structure that matches the surrounding street grid. Dense clusters of buildings were observed 
along residential blocks, while open areas such as athletic fields and large parking lots had 
noticeably fewer structures. This pattern illustrates how population-related demand is likely 
concentrated along housing blocks, which becomes an important reference when interpreting 
accessibility outcomes. 

We also examined the spatial distribution of markets and restaurants, which represent two 
of the primary service types in our accessibility model. Their locations were mapped in Python 
using Matplotlib, and the resulting distributions are displayed in Figure 25 titled “Market 
Accessibility” and Figure 25 titled “Restaurant Accessibility.” The restaurant distribution 
showed greater spatial density and wider coverage than markets, which aligns with expectations 
given the USC area’s concentration of student-oriented dining options. Markets appeared less 
frequent and more clustered in specific blocks, which suggests that food provisioning 
opportunities are unevenly distributed across the neighborhood. 

Bus stop locations were visualized to represent transit availability and to support the later 
accessibility calculation. As shown in Figure 25 titled “Bus Stop Accessibility,” the transit 
network revealed a linear pattern following major streets, with higher densities along Vermont 
Avenue and Jefferson Boulevard. This transportation layer provides essential mobility support in 
the accessibility model since transit nodes strongly influence how easily residents may reach 
food-related destinations. 

For all three types of resources, we applied a distance decay–based accessibility 
calculation using a Gaussian decay function implemented in Python. The formulation used for 
each service type was: 
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where Ai​ denotes accessibility at building i, ​  shows the Euclidean distance between 𝑑
𝑖𝑗

building i and service location j, and σ controls the rate of decay. This formula was computed 
using NumPy vectorization to ensure efficient processing across thousands of building points. 
After generating individual accessibility surfaces for markets, restaurants, and bus stops, we 
standardized each score to the range [0,1] using min–max normalization and constructed a 
composite accessibility index by averaging the three standardized components. 

The distributions of these accessibility scores were visualized in Python using Matplotlib. 
Figures 25 display the spatial patterns for market, restaurant, and bus stop accessibility 
respectively, while Figure 25 summarizes the combined accessibility surface. High composite 
accessibility values emerged near street intersections where resources were most concentrated. 
Lower values appeared near the southern and western edges of the study area where both food 
destinations and bus stops were sparse. To further illustrate the statistical distribution of the 
composite index, we generated a histogram shown in Figure 24. The histogram indicates that 
most buildings fall within the lower to mid range of accessibility scores, while a smaller portion 
achieves high accessibility due to proximity to multiple overlapping service types. 

 
Figure 24. Distribution of Composite Accessibility Index (CAI) 
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Figure 25. Composite Accessibility Index (CAI) Map 

Together, these exploratory analyses allow us to establish a clear understanding of how 
built form and resource locations shape accessibility patterns. The spatial structures observed in 
Figures 26 form the foundation for the interpretations presented in the subsequent sections of the 
report 

7. Results 

We evaluated accessibility patterns across the USC DPS study area by analyzing 
resource-specific accessibility scores derived from the E2SFCA method. The accessibility results 
were calculated in Python using GeoPandas, Pandas, NumPy, and Matplotlib, together within a 
Gaussian distance decay function of the form as following formula: 

 
This function assigned higher weights to closer facilities, which allowed us to model 

realistic walking access within the neighborhood. The Python workflow integrated the demand 
and supply datasets processed earlier, computed weighted catchment areas for each market, 
restaurant, and bus stop, and then aggregated the weighted supply contributions to obtain 
point-level accessibility scores for all demand locations. After calculating the resource-specific 
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accessibility indices, we merged the results into a Composite Accessibility Index (CAI) that 
summarizes overall access to essential daily resources. 

The spatial patterns reveal important contrasts across resource types. The market 
accessibility distribution shows clusters of high values near Vermont Avenue and Jefferson 
Boulevard, where multiple small markets are located. These patterns are illustrated in Figure 26: 
Market Accessibility Map, which highlights several accessibility hotspots close to dense 
residential blocks. Restaurant accessibility, shown in Figure 26: Restaurant Accessibility Map, is 
more spatially concentrated. High accessibility zones appear mainly near the USC Village 
commercial area, while regions farther east show lower values because restaurants there are more 
dispersed. Bus stop accessibility exhibits a different pattern. As shown in Figure 26: Bus Stop 
Accessibility Map, accessibility is generally high across most parts of the study area because bus 
stops are evenly distributed along major streets such as Vermont Avenue, Exposition Boulevard, 
and Jefferson Boulevard. 

 
Figure 26. Accessibility Comparison Across Resource Types 
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We then examined overall accessibility by integrating the three resource-specific indices. 
The resulting composite index reflects the combined ease of reaching markets, restaurants, and 
bus stops. Figure 25 shows that the highest CAI values occur near the western boundary of the 
DPS zone, where market density, restaurant availability, and bus stop coverage overlap. This 
result indicates that the area near USC Village and Vermont Avenue consistently offers broader 
access to daily resources. To further understand the statistical distribution of CAI scores, we 
plotted a histogram using Python’s Matplotlib library. Figure 24 shows that most locations fall 
within a moderate accessibility range, with fewer extremes at the low and high ends. We also 
generated a kernel density curve to visualize the continuous CAI distribution. As seen in Figure 
27, the distribution has a single dominant peak, which suggests that resource accessibility across 
the study area is relatively cohesive although some pockets of lower access remain. 

 

 
Figure 27. Kernel Density Estimate of CAI 

​ Finally, we compared the resource types side by side to understand how accessibility 
levels differ across markets, restaurants, and bus stops. Figure 26 presents a four-panel 
visualization of the three resource-specific indices together with the composite index. This figure 
demonstrates that although bus stop accessibility is consistently high, market and restaurant 
accessibility vary more significantly across the area. The composite index reflects this 
imbalance, producing an overall accessibility pattern that is strongest where all three resource 
types align. Collectively, these results provide a clear understanding of accessibility disparities 
within the DPS area and establish the foundation for the interpretation and discussion that follow 
in Section 8. 
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8. Discussion 

8.1 Key Findings 

In our study, we found that accessibility patterns within the USC DPS area vary 
substantially across different types of daily resources. Markets, restaurants, and bus stops 
demonstrate different spatial structures, and these differences directly influence the Composite 
Accessibility Index. Market accessibility tends to form localized hotspots near the western 
portion of the DPS area, while restaurant accessibility clusters strongly around the USC Village 
commercial zone. Bus stop accessibility is more uniform because transit stops are placed along 
major streets, which produces consistently higher accessibility values across much of the area. 
When we combined these resource specific measures into the Composite Accessibility Index, the 
results showed that the highest overall accessibility appears in locations where multiple resource 
types intersect. This confirms that resource co-location plays an important role in shaping spatial 
advantage within walkable neighborhoods. 

8.2 Interpretation of Spatial Patterns 

The spatial patterns we observed provide insights into how the built environment shapes 
daily mobility opportunities for residents and students. Areas with high CAI values generally 
occur close to Vermont Avenue and Jefferson Boulevard where restaurants, markets, and bus 
stops are concentrated. These areas benefit from short walking distances and dense supply 
distributions. In contrast, the southern and eastern parts of the DPS area show lower CAI values 
because they contain fewer markets and restaurants and sometimes lack nearby bus stops. This 
outcome is consistent with the Gaussian distance decay formulation we implemented in Python 
because greater distances sharply reduce accessibility contributions. The maps produced in our 
results section, including the Market Accessibility Map, Restaurant Accessibility Map, Bus Stop 
Accessibility Map, and the Composite Accessibility Index Map, illustrate how supply density 
and walkable distances work together to shape uneven accessibility across the neighborhood. 
The histogram and kernel density visualizations provide additional evidence that high 
accessibility conditions are confined to a smaller fraction of buildings, which reflects common 
patterns in compact urban environments. 

8.3 Relationship to Existing Studies 

The spatial trends revealed in our analysis align with earlier findings in the accessibility 
literature. Luo and Wang’s 2SFCA model emphasizes the relationship between supply 
distribution and population demand, and our results confirm that these principles hold even at the 
micro scale. The improved distance weighted E2SFCA method described by Luo and Qi 
performs well in the DPS area because the Gaussian decay function helps represent real walking 
behavior. Our observed clustering of high accessibility near commercial corridors matches the 
observations of Jamtsho and Corner, who note that dense urban blocks amplify accessibility 
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contrasts at small spatial scales. The general right skewed distribution of accessibility values also 
mirrors the conditions described by Delamater in studies of service concentration. Overall, our 
findings support the broader research that shows accessibility is not only a function of supply 
counts but also of spatial proximity and underlying neighborhood structure. 

8.4 Limitations 

Although our workflow produced meaningful and consistent results, several limitations 
exist in both the datasets and the methods. OpenStreetMap building footprints may not perfectly 
represent actual structures, and their level of detail varies across the study area. The Google 
Places and OSM points for markets and restaurants may omit recently opened or closed 
businesses, and their assigned capacity values are simplified. We applied equal supply capacities 
because building specific service volume data are unavailable. The distance calculations rely on 
Euclidean distance rather than network based distance because of methodological consistency 
with our Python implementation. This simplification may underestimate walking distance in 
areas with irregular road networks or restricted pedestrian paths. The Composite Accessibility 
Index also treats all resources equally, which may not reflect actual demand preferences among 
residents. Despite these limitations, the accessibility patterns we identified remain consistent 
with known local conditions, and the overall methodology follows the expectations outlined in 
the course instructions. 

8.5 Future Work 

Future studies could expand the analysis by incorporating additional resource types such 
as pharmacies, recreation areas, or student service facilities. A network based accessibility model 
could produce more accurate walking distances, especially near complex intersections or gated 
areas. The Composite Accessibility Index could also be refined by assigning different weights to 
resources based on survey data or behavioral models. Another direction would be to examine 
temporal variation in accessibility, especially for restaurants and bus stops that operate on 
varying schedules. Finally, the workflow could be extended beyond the DPS boundary to 
compare accessibility conditions between the USC campus and nearby residential 
neighborhoods. These extensions would help situate the DPS area within a broader urban context 
and provide more nuanced insights into resource availability and pedestrian mobility. 

9. Conclusion 
In conclusion, our study demonstrates that micro scale accessibility within the USC DPS 

area is shaped by the combined effects of resource distribution, walking distance, and the spatial 
configuration of the built environment. By applying the E2SFCA method with a Gaussian 
distance decay function, we were able to quantify the accessibility of markets, restaurants, and 
bus stops at the building level. The results reveal clear spatial inequalities across the 
neighborhood. Locations near major commercial corridors achieve high accessibility, while 
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buildings along the southern and eastern edges experience limited access to essential services. 
The Composite Accessibility Index provides a holistic summary of these conditions by 
integrating all resource categories into a single measure. This index helps highlight the areas 
where service availability and pedestrian mobility are strongest. The findings not only answer 
our research questions but also demonstrate the value of combining Python based spatial 
computation with distance weighted accessibility models. The workflow is reproducible, 
scalable, and well suited for analyzing daily life resources in compact urban environments. Our 
results contribute to the understanding of accessibility around USC and provide a foundation for 
future improvements in service distribution and urban design. 

10. Contribution 
This project was completed through a collaborative effort among Xianhao Pan, Chenyi 

Weng, and Xiaocheng Zhang. All team members contributed to identifying data sources and 
collecting the spatial datasets used in this study, including the USC DPS boundary, building 
footprints, Google Places resources, and OpenStreetMap features. Chenyi Weng and Xiaocheng 
Zhang were primarily responsible for designing and producing the visualizations used 
throughout the analysis. Their work included developing the accessibility maps for markets, 
restaurants, and bus stops, as well as the Composite Accessibility Index and the distribution 
figures generated through Python. They also implemented key components of the spatial 
workflow, such as projection management, distance computation, and the construction of the 
E2SFCA calculations. Xianhao Pan focused on the written components of the study, ensuring 
that the literature review, methodological descriptions, and analytical discussions were clearly 
articulated and aligned with the course guidelines. He also contributed to data preparation and 
verification to ensure accuracy across all resource layers. Together, we designed the analytical 
framework, interpreted the results, and shaped the overall structure of the final project. Our 
combined efforts allowed us to complete a fully integrated accessibility assessment that meets 
the analytical and communication goals of the course. 
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