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1. Introduction
1.1 Background

Accessibility is an important topic in urban research because it describes how easily
people can reach the services needed for daily life. According to Pearce et al. (2006), differences
in access to food, transportation, and public services can influence health, well-being, and social
equity. In walkable neighborhoods, even small variations in the location of essential services can
greatly affect daily routines. The area around the University of Southern California (USC) is a
student-centered environment where most movement happens on foot. This makes accessibility
to markets, restaurants, and bus stops especially important for people living in this community.

Spatial accessibility is often measured using floating catchment area models. According
to Luo and Wang (2003), the 2SFCA method gives a clear way to evaluate the balance between
supply and demand. Later studies introduced distance-decay weights to better represent real
travel behavior on foot. According to Luo and Qi (2009), the E2SFCA method reduces the
weight of facilities located farther away, which produces more realistic accessibility patterns.
Micro-scale accessibility studies also help reveal fine spatial differences. According to Jamtsho
and Corner (2014), small study areas make it possible to identify inequalities that are not visible
in large regional analyses.

Because the USC neighborhood contains many services within short walking distances, it
is suitable for building-level analysis. According to Delamater (2013), accessibility can change
significantly even within small walking ranges, which makes micro-scale analysis valuable for
understanding local conditions. These ideas form the foundation of our research.

1.2 Study Objectives

The objective of our study is to measure accessibility to three categories of daily-life
resources which are markets, restaurants, and bus stops. We focus on the USC Department of
Public Safety (DPS) area and use the E2SFCA method to identify patterns of access within the
neighborhood and explore how easily residents and students can reach these essential services.

1.3 Research Questions
Our study addresses the following research questions.

1. What are the spatial patterns of accessibility for markets, restaurants, and bus stops
within the DPS area.

2. Do the three resource types follow similar patterns or show different forms of spatial
clustering.

These questions guide our analysis and help us understand how the walkable environment
functions for people who live and study near USC.

1.4 Significance



This study is significant because it provides detailed information about accessibility at a
micro scale. Most large-scale studies cannot capture small variations that directly affect students
and residents. By focusing on building-level accessibility, our research highlights local strengths
and weaknesses in the availability of daily services. The findings can support planning decisions,
improvements to pedestrian infrastructure, and discussions about resource distribution in the
USC neighborhood. The results also demonstrate how E2SFCA can be used for small, dense
communities where walking is the primary travel mode.

2. Study Area

2.1 Macro Area (LA County)

As shown in Figure 1, the macro study area is Los Angeles County. This region provides
a broader context for understanding the urban environment surrounding USC. According to the
Los Angeles County GIS Portal (2020), the county contains thousands of census tracts with
different levels of population density, service access, and built environment characteristics.
Including the macro area helps introduce the regional setting before narrowing down to the local
neighborhood around USC.
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Figure 1. Los Angeles County boundary defining the macro study area.
2.2 Micro Area (USC DPS)



As shown in Figure 2, the micro study area is the USC DPS boundary, which covers
student housing complexes, academic buildings, restaurants, markets, and multiple bus stops.
The area is compact and highly walkable, making it suitable for micro-scale accessibility
analysis. The DPS boundary defines the area where students and residents most frequently walk
in their daily routines. This localized focus allows us to study accessibility at the building level.
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Figure 2. USC DPS patrol area defining the micro study area.

2.3 Why DPS is suitable for micro-scale accessibility

The DPS area is appropriate for this research for three main reasons.

1. Ttincludes a variety of essential services located within short walking distances.
2. It contains a dense network of buildings and streets, which supports detailed accessibility

modeling.

3. Walking is the dominant mode of travel in this neighborhood, which aligns well with the
E2SFCA method that uses distance-decay functions to represent walking behavior.



According to Jamtsho and Corner (2014), compact and walkable areas are ideal for fine-scale
accessibility research. Overall, these factors make the DPS area a suitable environment for

building-level analysis.

3. Data

3.1 Data Sources (dataset table)

Dataset Name

Description

Source Link

LA Census_Tract.shp

2020 Census tracts of Los Angeles County

https://egis-lacounty.hub.arcg
1s.com

LA _ Population.csv

2023 ACS 5-year population estimates for
LA County

https://api.census.gov

usc_dps_boundary.shp

USC Department of Public Safety
patrol-area polygon (DPS area)

https://dps.usc.edu/patrol

DPS area, extracted from OSM

usc_dps_markets.shp Market and supermarket locations within [ OSM (via Python OSMnx)
USC DPS area, extracted from OSM
using osmnx

usc_dps_restaurants.shp | Restaurant locations within USC DPS OSM (via Python OSMnx)
area, extracted from OSM using osmnx

usc_dps_buildings.shp | Building footprint polygons within USC OSM (via Python OSMnx)

USC_DPS BusStop.shp

Metro Bus Stops clipped to DPS boundary

https://developer.metro.net/gi
s-data/

LA boundary no_islan
d.shp

Los Angeles County boundary with
islands removed

LA County GIS hub

Table 1. Summary of Datasets and Sources

As shown as Table 1, our project combines demographic, urban infrastructure, and
administrative boundary datasets to support the analysis of accessibility within the USC
Department of Public Safety (DPS) area. The population data are derived from the 2023
American Community Survey (ACS) 5-year estimates, which provide tract-level population
counts for all of Los Angeles County. Census tracts and the LA County boundary serve as
fundamental reference layers for spatial alignment. Facility data, including markets, restaurants,
and building footprints, originate from OpenStreetMap. These datasets capture local amenities
and the physical structure of the built environment within the DPS area. Metro bus stop locations
are sourced from the official Los Angeles Metro GIS portal, providing an accurate inventory of
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transit access points. The USC DPS patrol-area polygon defines the geographic extent of our
study and serves as the clipping boundary for all facility layers. Together, these datasets allow us
to model both supply and demand for urban services and compute accessibility across
census-defined population units.

3.2 Data Format and Attributes

All datasets used in the project are stored in ESRI Shapefile or CSV format. Spatial
datasets contain geometry fields representing points or polygons. The LA Census Tract layer
includes unique GEOID codes and basic administrative attributes. The population CSV file
contains tract-level population counts that were later joined to the spatial tract layer. The
OSM-based facility layers include descriptive attributes such as amenity, shop, name, and
address information, depending on the feature type. Building footprints are stored as Polygon
geometries and include general OSM tags that characterize building usage when available. The
bus stop dataset contains stop identifiers, names, and categorical information relevant to public
transit. To support the accessibility analysis, we added standardized fields such as SupplyID and
Supply Capacity across all supply layers. Each layer was converted into a consistent projected
coordinate system (UTM Zone 11N) to ensure accurate distance calculations.

3.3 Validation Data

We performed internal validation by visually inspecting all spatial layers within the study
boundary. Census tracts, facility points, and building footprints were checked for proper
alignment and completeness. Population counts were reviewed to ensure that the join between
the ACS dataset and the Census Tract shapefile was accurate based on the GEOID field. For the
OSM-based datasets, we verified that markets, restaurants, and building footprints appeared in
plausible real-world locations by comparing them to basemap imagery. The bus stop dataset was
cross-checked with the Metro-provided spatial layer to ensure that only stops within the DPS
boundary were included in the final dataset. This combination of spatial verification and attribute
checking ensured that the datasets were sufficiently reliable for accessibility modeling.

3.4 Limitations of the Datasets

While the datasets are appropriate for our analysis, several limitations exist.
OpenStreetMap data rely on community contributions and may be incomplete or inconsistent,
especially for smaller facilities that are less frequently mapped. Some restaurants or markets may
be missing, misclassified, or lack attribute information. Census tract boundaries are relatively
large and may not perfectly represent population distribution within the DPS area. As a result,
assigning population counts to a smaller custom study area introduces some spatial uncertainty.
Additionally, ACS population estimates include sampling error, which propagates into the
demand calculations. Building footprint data represent physical structures but do not include
information about building function, occupancy, or population counts. The Metro bus stop



dataset represents stop locations but not service frequency or ridership, meaning our analysis
captures spatial availability rather than service quality. Despite these limitations, the combined
datasets provide a robust basis for modeling accessibility and identifying spatial patterns within
the USC DPS area.

4. Data Wrangling

4.1 Data Preprocessing (Macro area: LA County)

We began the macro level preprocessing by preparing a clean and accurate boundary for
Los Angeles County. We first downloaded the national county polygons from the U.S. Census
TIGER database and selected the polygon that represents Los Angeles County. The original
polygon included several offshore areas such as Catalina Island, which were not needed for our
analysis. To solve this issue, we used a Python script to keep only the largest polygon and
remove the extra offshore components. The resulting boundary file, named
LA County no_islands.shp, is shown in Figure 1. After creating a clean county boundary, We
downloaded the 2020 Census Tracts from the LA County GIS Hub. These census tracts were
then clipped to the cleaned county boundary using the Clip tool in ArcGIS Pro. The output,
named CensusTracts LA _Clip, contained the correct geometry and spatial extent for all census
tracts within Los Angeles County. This clipped layer is presented in Figure 3.
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Figure 3. Clipped 2020 Census Tracts Within Los Angeles County



Next, we prepared the demographic information needed for the analysis. We downloaded
the 2023 ACS five year population estimates (Table B01003) from the Census API. The

population table contained a GEO_ID field that stored long identification strings. We created a
new field called GEOID clean and used Python to extract the last eleven characters of each
GEO _ID so that it would match the standard census tract format.

To complete the join, we created a corresponding GEOID field inside the
CensusTracts LA Clip layer. The field was generated by combining the state FIPS code for
California, the county FIPS code for Los Angeles County, and the tract code stored in the CT20

attribute. Once both datasets shared the same identifier format, we performed an attribute join in

ArcGIS Pro using GEOID from the census tracts and GEOID_clean from the population table.
The join successfully added the BO1003 population estimates to each census tract, as shown in

Figure 4.
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Figure 4. Joined Census Tracts With 2023 ACS Population Attributes

After completing the join, we calculated population density at the tract level. We added a
new field named PopDensity (type: Double) and used a Python expression to divide total

population (B01003 001E) by the tract area in square kilometers:

float(!B01003_001E!) / (IShape Area! / 1000000)

The calculated PopDensity field successfully appeared in the attribute table with realistic

values that ranged from very low density in rural tracts to extremely high density in urban areas.
We then visualized population density in ArcGIS Pro using Graduated Colors with the Natural

Breaks (Jenks) classification and five classes. This method provides a meaningful way to

highlight areas of high and low density across the county. The final population density map is

presented in Figure 5.
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Figure 5. Population Density of Los Angeles County Census Tracts (2023)

We produced a county scale population density map to illustrate how residents are
distributed across Los Angeles County. As shown in Figure 5, census tracts are symbolized using
a Natural Breaks (Jenks) classification based on persons per square kilometer. Low-density
census tracts, symbolized in light yellow, tend to appear in the less developed outer areas of Los
Angeles County, particularly toward the north and other fringe zones. Higher density tracts,
shown in darker orange and red, concentrate in central and southern urban areas such as
Downtown Los Angeles and surrounding neighborhoods.

4.2 Data Preprocessing (Micro area: DPS)



For the micro-area analysis, we first prepared all geospatial datasets required to describe
the built environment and urban activity patterns within the USC Department of Public Safety
(DPS) patrol area. Our preprocessing began with obtaining the official DPS boundary in polygon
format. The boundary was projected to the WGS 84 geographic coordinate system to ensure
compatibility with additional datasets derived from OpenStreetMap (OSM) and the Los Angeles
Metro GIS portal. We used this boundary as the spatial extent for all subsequent data extraction
and clipping procedures.

To obtain micro-scale amenities within the DPS area, we collected point-based features
directly from OSM using Python. We worked in Google Colab and installed the osmnx and
geopandas libraries to automate data acquisition. After reading the DPS boundary shapefile and
converting it into a polygon geometry, we queried OSM for specific feature types. For markets,
we extracted all points tagged as “supermarket,” “convenience,” or “marketplace.” For
restaurants, we queried the attribute amenity = restaurant. Because OSM often returns mixed
geometry types, we filtered each dataset to retain only point geometries to avoid write errors
when exporting to shapefiles. We applied a similar process to download buildings, except in this
case we extracted polygons and multipolygons associated with the tag building = True,
producing a detailed footprint layer of the built environment. In all cases, the cleaned geometries

were exported to shapefiles and prepared for visualization in ArcGIS Pro.

Public transit features were obtained from the Los Angeles Metro developer GIS portal,
where we downloaded the most recent countywide bus stop database. Each bus stop contains
attributes listing the routes that serve it, and the dataset represents each stop as a unique point.
Because our analysis focuses exclusively on the DPS patrol area, we clipped the countywide bus
stop layer using the DPS boundary in ArcGIS Pro. This produced a refined subset of transit stops
located entirely within or immediately adjacent to the patrol zone.

After preprocessing all datasets, we visualized them together in ArcGIS Pro to verify
spatial accuracy and to establish a clear spatial understanding of the DPS environment. The
resulting map, Figure 6 shows the distribution of buildings, markets, restaurants, and bus stops
relative to the DPS boundary. Several spatial patterns emerge from the figure. Buildings are
densely clustered around the university core, reflecting concentrated academic and residential
functions. Restaurants and markets appear along major corridors such as Figueroa Street and
Jefferson Boulevard, indicating highly active commercial zones. Bus stops are evenly distributed
along primary streets, suggesting strong transit accessibility throughout the patrol area. These
spatial relationships illustrate that the DPS micro-area is a compact, high-density urban
environment with substantial pedestrian movement, diverse amenities, and a well-connected
transit network.
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Figure 6. Urban Facilities and Transit Features within the USC DPS Area
4.3 Demand Data Preparation and Calculation

In this part of the study, we prepared two types of demand data. The first type represents
the residential population within the DPS area, and the second type represents buildings that may
require access to public facilities. The overall goal was to create a consistent set of demand
points that could support the accessibility analysis in later sections. To estimate the population
within the DPS boundary, we started with the census tracts covering Los Angeles County. Each
tract contained total population counts and was assigned an additional field called orig area,
which stores the original tract area in square meters. We then clipped the census tracts using the
DPS boundary to extract only the portions of tracts that fall inside the study area. The output
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layer preserved the demographic attributes and provided a reduced geometry representing the
portion inside the DPS boundary, as illustrated in Figure 7. For each clipped tract segment, we
calculated its area and stored it as clipped area. We then joined the original tract area back to the
clipped layer using the shared GEOID field. This allowed us to compute the proportion of each
tract that is located within the DPS boundary. The ratio of clipped area to orig_area was used to
estimate the local population, stored in the attribute local pop. The calculation follows the
formula:

lipped
local_pop = pop_total x M
orig_area

This procedure provides a consistent estimate of population distributed across partially
intersecting census tracts. Figure 7 shows the clipped census tracts and their calculated fields,
including orig_area, clipped_area, and local pop.

#5 DPS_CensusTracts

Field: EAEI(I Selection: PE Select By Attributes .QEEQ‘ Switch H
iEQID_clean Shape_Length Shape_Area LABEL clipped_area orig_area local_pop pop_total area_ratio
1 6037221120 14504594 1171647963 | 2211.20 108.850093  317501.371092 1.009987 2946 0.000343
2 6037221500 27.742123 45.151531 | 2215.00 4,194731 | 380721.443633 0.03836 3527 | 0.000011
3 6037221601 5321.594036 30021.717887 | 2216.01 2789.120014 369896582513 2461144 3264 0.00754
4 037221602 2110.81732 21462.983185 2216.02 1993.984361 522792.063053 8.478758 2223 0.003814
5 6037221710 7898,100312 | 2544564.842458 | 2217.10 264269.77842  327981.571163 2141.672377 2658 0.805746
6 6037221810 7479.188851 | 3273213.869152  2218.10 304092.735384 304336.037509 2431.054933 2433 0999201

Figure 7. Clipped census tracts within the DPS area and calculated population fields (orig_area,
clipped_area, local pop)

In addition to population demand, we also created a spatial representation of buildings
within the DPS area. The building footprints extracted from OpenStreetMap were originally
polygons. Since later accessibility and matching steps in the workflow require point-based
demand units, we converted all building polygons into centroid points. The conversion was done
using the Feature To Point tool with the "Inside" option. This resulted in a building point layer
where each point represents a single building footprint. Figure 8 presents the distribution of these
centroids across the DPS area.



12

rUTTTaTE

Building Type Distributiongwithin the DPS Area

Convention
Center

S ﬂudlnr:g Ave

E B
E-: b
@
e @
L] .....‘: ® L]
o ? \UniverSiy®i® o oo ©
® g Soyghern .'
gorfa s RO O .
£
J’a,,ys
Eesy,
° ® ° e %, Son g
eExposition Park . s
W 39th St S ° % =
L .....-..: . v'\e
ke & Los Ang@es (] =&
W 39th P ) Men’cr ‘. 8
\ lbllseu.r’ -
O g © L) ]
Browning Blvd e o * L) ; 5
h o'y . 0 014 0.28 0.55 Mileso”
s Srrmrere =pF 203t |5y .| — (5 ] 5 ) &
OSM Building Classification I &
5 g z G
£ usc bpPs Aréa Boundary v e grandstand 2 o gesidential .. 5
building w  W42ndst 2 ® guardhouse 2 * Zetail
e apartmen 3 e hangar o e “roof
p rtrge ts . g W 43rd St
e chapet < e hospital e school
@ Churcg 5 W Vern E:H m-hOtE| e Shgd E
s college e e house p o stadium
@ commercial ® industrial oy I ° tent
e constructlbi’" ! e kindergarten ® university
» i >
e dormitory E ® mosque “ £ e warehouse
= e o c
® garage g ®  MuUseUMkofes: F‘JﬁTanmn;-’Gaunin FAD, NOARPUSHER) Openstieethap
- },garage.w 57st St g .U parking : w  contributors, 04 theé’ﬁ?ludfhﬁn\r)glrﬂtés>

Figure 8. Building centroids generated from OSM building footprints

The OSM building dataset includes more than 30 detailed building types. Because the full
set of categories is too granular for accessibility analysis, we grouped the buildings into five
major classes. We created a new field, building group, and used a Python expression in the Field
Calculator to assign each building to one of the categories: Residential, Commercial,
Institutional, Recreational, or Other. Categories such as apartments, houses, and dormitories were
grouped as Residential, while types such as schools, universities, hospitals, museums, and other
public service buildings were grouped as Institutional. After the classification, the resulting map
displayed a clear spatial distribution of different building types across the DPS area. Figure 9
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illustrates the final building classification map, which summarizes the five groups and their
locations.
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Figure 9. Building type classification map showing five generalized building groups

Through these steps, we prepared a complete demand dataset that includes both residential
population estimates and building demand points. These layers form the basis for subsequent analyses of

accessibility and spatial matching.

4.4 Supply Preparation (Markets, Restaurants, Bus Stops)

In this part of the project, we prepared the supply datasets that represent food and service
access within the USC DPS Area. These supply layers include markets, restaurants, and bus
stops, which were obtained from OpenStreetMap and imported as point features in ArcGIS Pro.
To ensure spatial consistency across all datasets, we exported each feature class using a unified
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projected coordinate system. We selected NAD 1983 UTM Zone 11N because it provides

appropriate units in meters and supports accurate distance-based analysis, which is necessary for
the 2SFCA method used later in the workflow.

Each supply dataset was processed individually. We used the Export Features tool and
saved the outputs as Markets UTM, Restaurants UTM, and BusStops UTM. After exporting,
we verified that all layers correctly aligned with the USC DPS boundary and were fully
contained within the study area. This step ensured that no supply point remained in an
unprojected coordinate system or outside the analysis zone.

Figure 10 shows the distribution of markets, restaurants, and bus stops within the DPS
Area after projection. The map illustrates the relative clustering of supply locations, with
restaurants and markets concentrated near major streets and around the USC campus, while bus
stops are more evenly distributed across the area. The consistent coordinate system confirms that
all three supply layers are ready for subsequent accessibility and catchment analyses.

Supply Locations within the USC DPS Area (NAD 1983 UTM Zone 11N)
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4.5 Distance Preparation for E2FCA

To prepare the distance inputs required for the E2ZFCA accessibility model, we created a
set of near-distance tables that quantify the proximity between every building within the DPS
area and the available supply locations. This step allows us to identify the closest market,
restaurant, and bus stop for each building. Because all datasets were already projected into the
NAD 1983 UTM Zone 11N coordinate system, the distances generated by ArcGIS Pro are
expressed in meters, which is appropriate for later calculations in Step 1 and Step 2 of the
E2FCA method.

We used the Generate Near Table tool to build three separate distance matrices: one for
buildings to markets, one for buildings to restaurants, and one for buildings to bus stops. For
each run, the buildings served as the input layer and the selected supply layer served as the near
features. We set the search radius to 1000 meters and enabled the location output option so that
the resulting tables would include both the coordinates of the demand points and the coordinates
of their closest supply points. The tool also returned a unique ID for each nearest feature and the
Euclidean distance between the building and that supply location.

Figures 11 through /3 summarize the results of this distance preparation step. Figure 11
shows the near-distance table generated for markets. Figure 12 displays the distance table for
restaurants, and Figure 13 presents the results for bus stops. Together, these three datasets
establish the demand-to-supply relationships that are required for computing the Gaussian-based
distance decay, the supply-to-demand ratios, and the final accessibility scores in the E2FCA
workflow.

#5 MNear Markets X 2z Mear_Restaurants FH Nea r_BusStops

Field: (E Add B Calculate = Selection: F@ Select By Attributes .QEE‘\" Switch

OBJECTID * IN_FID  MEAR_FID  NEAR_DIST FROM_X FROM_Y NEAR X MEAR_Y

111 1 7 0.003511 | -118.289506 | 34.020451 | -118.292091 | 34.022826
2|2 2 [ 0.00623%9 | -118.287427 34.018681 | -118.292091 34.022826
3|3 3 7 0.002917 | -118.290854 | 34.020185 | -118.292091 | 34.022826
4 4 4 3 0.006981 | -118.281392 34.018651 | -118.278784  34.025127
5|5 5 3 0.004802 | -118.286453  34.021204 | -118.284808 | 34.025716

Figure 11. Output of the Generate Near Table for Markets (Near Markets)



16

iz Mear_Markets 2 Mear_Restaurants X iz Mear_BusStops

Field: fF Add FE Calculate  Selection: E_JE Select By Attributes .QEE;‘I Switch

OBJECTID * IM_FID NEAR_FID NEAR_DIST FROM_X FROM_Y MEAR_X MEAR_Y

111 1 5 0.002223 | -118.289506 | 34.020451 | -118.291089 | 34.013882
22 2 12 0.001805 -118.287427 | 34.018681  -118.285997  34.019784
3|3 3 5 0.001324 | -118.290854 | 34.020185 | -118.291089 | 34.018882
4 4 4 3 0.00179  -118.281392  34.018651 | -118.282494  34.017241
5|5 5 12 0.001452  -118.286453 | 34.021204 | -118.2855997 | 34.019784

Figure 12. Output of the Generate Near Table for Restaurants (Near Restaurants)

FEH Mear_Markets FH Mear_Restaurants 5 Near_BusStops X

Field: B Add [E Calculate  Selection: FE Select By Attributes %é Switch

OBJECTID * IN_FID NEAR_FID NEAR DIST FROM X  FROMY NEARX NEAR_Y

1 | 1 1 &9 0.002118 | -118.289506 | 34.020451 | -118.288614 | 34.01853
Al 2 &6 0.000532 -118.287427 | 34.018681 | -118.286944 | 34.018459
3|3 3 33 0.001651 | -118.290854 | 34.020185 | -118.291386 | 34.013622
4 4 4 17 0.000425 -118.281392 | 34.018651 | -118.281793 | 34.01879
5|5 5 &6 0.002735% | -118.286453 | 34.021204 | -118.2365944 | 34.018455

Figure 13. Output of the Generate Near Table for Bus Stops (Near BusStops)

5. Methodology

5.1 Study Area Distance Representation

To represent the baseline distance structure of the study area, we calculated the Euclidean
distance from every building point to the nearest restaurant, market, and bus stop within the USC
DPS boundary. All datasets were first projected into the NAD 1983 UTM Zone 11N coordinate
system to ensure that distance calculations were expressed in meters, which provides a consistent
and reliable basis for accessibility modeling. We then applied ArcGIS Pro’s Near tool to generate
distance attributes for each building point. These values were symbolized using graduated colors
with Natural Breaks to highlight variations in proximity across the DPS area.

Figure 14 illustrates the distance from each building point to the nearest restaurant. The
map shows clear spatial variations, with clusters of shorter distances concentrated along Vermont
Avenue and Exposition Boulevard, while greater distances appear in the northern and
southeastern residential blocks. Figure 15 presents the distance to the nearest market. Compared
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to restaurants, markets are less evenly distributed, which results in a broader range of distances
across the study area. Figure 16 displays the distance to the nearest bus stop. Bus stops are more
densely distributed compared to food sources, which results in generally shorter and more
uniform distances, especially around Expo Park and the residential blocks near Jefferson

Boulevard.
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Figure 16. Distance to the Nearest Bus Stop within the DPS Area.

These distance maps form the core spatial framework for the later E2ZFCA analysis. They
illustrate how the locations of key services differ throughout the DPS neighborhood and establish
the basic distance patterns that shape supply—demand relationships and overall accessibility

outcomes.

5.2 Supply—Demand Definition
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To implement the E2SFCA model, we first prepared demand and supply layers in a
consistent structure that allows the computation of demand-to-supply relationships. The demand
layer represents buildings within the DPS area, while the supply layers include markets,
restaurants, and bus stops. Each layer was processed to ensure that every point contains a unique
identifier and a defined capacity value.

For the demand side, we used the Buildings Points Project layer and assigned each
building a unique DemandID and a population value (POP). Since detailed household counts or
residential population data are not available at the building level for the DPS area, we adopted a
standard assumption used in many local-accessibility studies by assigning each building a POP
value of 1. This allows the model to treat each building as an equal unit of demand. The resulting
attribute structure is shown in Figure 17, where both DemandID and POP fields are successfully
added to all building points.

£5 Buildings_Points_Project v

Field: 3 Add Selection: g Select By Attributes B Switch =

AY NEARX  NEARY OBJECTID IN_FID MEAR_FID MEAR_DIST FROM_X FROM_Y NEARX  NEARY POP DemandD ~

1 |3~451 -118.292091 | 34.022826 1 1 69 0.002118 | -118.289506 | 34.020451 | -118.283614 | 34.01853 1 1
2 8681 -118.292091  34.022826 2 2 66 0.000532 -118.287427 | 34018681 -118.286944 34.018459 1 2
3 0185 -118.292091 | 34.022826 3 3 33 0.001651 | -118.290854 | 34.020185 | -118.291386 | 34.018622 1 3
4 8651 -118.278784 | 34.025127 4 4 17 0.000425 -118.281392 | 34.018651 -118.281793  34.01879 1 4
5 1204 -118.284308 | 34.025716 5 5 66 0.002789 -118.286453 | 34021204 | -118.286944  34.018459 1 5

Figure 17. Demand Layer Structure for Buildings within the DPS Area

For the supply side, we prepared three layers: Markets UTM, Restaurants UTM, and
BusStops UTM. Each supply point was assigned a unique SupplyID, which ensures that all
supply points can be referenced consistently during the calculation of supply-to-demand ratios in
Step 1 of the E2FCA method. We also added a Supply Capacity field to each layer and assigned
a value of 1 to all records. This assumption reflects equal service potential for all markets,
restaurants, and bus stops within the DPS area. The updated supply tables, shown in Figures 17,
18, and 19, confirm that each point contains the required fields for the E2FCA model.

= Buildings_Points_Project £ Restaurants_UTM X &= Markets_UTM = BusStops_UTM
Field: & Add Selection: PE Select By Attributes .QEE‘\" Switch

OBJECTID * Shape * element id amenity SupplylD Supply_Capacity
1 |‘| Point node 2643391587 | restaurant 1 1
2 |2 Paint node 4141781780  restaurant 2 1
3 |3 Paint node 4547476734 | restaurant 3 1
4 4 Paint node 5231970324 restaurant 4 1

Figure 18. Supply Structure for Restaurants within the DPS Area
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iz Buildings_Points_Project iz Restaurants_UTM #8 Markets UTM X iz BusStops_UTM
Field: EAdd Selection: PE Select By Attributes .‘Eé‘ Switch

QBJECTID * Shape * element id addr_stree name shop SupplylD Supply_Capadty
11 Point node 2578244375 | Vermont Avenue Ralphs supermarket 1 1
2| 2 Paint node 2643391538 Lee's Market convenience 2 1
33 Point node 5237417649 | Hoover Street Trader Joe's supermarket 3 1
44 Point node 5695236165 | South Figueroa 7-Eleven convenience 4 1
5|5 Point node 6045067406 | Figueroa Street Cal Mart Beer & Wine... | supermarket 5 1
6 B Point node 7158037351 | Estrella Avenue Henry's Market convenience 6 1
7|7 Point node 11144812568 | Vermont Avenue Smart & Final supermarket 7 1

Figure 19. Supply Structure for Markets within the DPS Area

iz Buildings_Points_Project i) Restaurants_LTM A Marketz_ LUTM i#E BusStops_UTM X
Field: F& Add Selection: [gg Select By Attributes 52 Switch

OBJECTID *  Shape * STOPNUM  STOPNAME LAT LONG SupplylD Supply_Capacity
1 1 Point 56 Adams /Vermont 34.032672 | -113.291204 1 1
2 2 Point 1490 Jefferson / Flower 34021417 -118.278482 2 1
3 |3 Point 1813 | Flower / 23rd 34.030324 | -118.273023 3 1
4 4 Point 1830 Exposition / University 34.018015 -113.286713 4 1
5 |5 Point 1838 | Exposition / Vermont 34.018475  -118.291364 5 1

Figure 20. Supply Structure for Bus Stops within the DPS Area

With DemandID, POP, SupplyID, and Supply Capacity consistently defined across all
four datasets, the study area is now fully prepared for calculating distance-decay—weighted
accessibility in Sections 5.3 through 5.6. The structured preparation in this section ensures that
demand and supply can be matched appropriately when computing service ratios and
accessibility scores in the next steps of the methodology.

5.3 Gaussian Distance Decay Function

In our project, our team applied a Gaussian distance decay function to model how
accessibility decreases as distance increases. This function assigns higher weights to supply
locations that are closer to each demand point and gradually reduces the influence of facilities
that are farther away. The Gaussian curve is smooth and continuous, which allows it to capture
realistic spatial interactions within the DPS area. We used the standard Gaussian decay
expression as below.

o) - oxs (~2)

where d is the network-based or Euclidean distance between each supply point and each
demand point, and A is the decay parameter. A smaller A causes the weight to drop rapidly with
distance, which results in a localized accessibility pattern. A larger A produces a slower decline
and reflects a broader catchment area.

In our analysis, we selected a bandwidth that reflects walkable distances within the DPS
community. The Gaussian weights produced here were used in both steps of the E2FCA method.
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During Step 1, the decay function weights each demand point when computing the
supply-to-demand ratio. During Step 2, the function weights each supply ratio when calculating
the final accessibility score for all residential buildings.

This approach ensures that accessibility results reflect realistic travel behavior, where
nearby resources contribute more strongly to local accessibility than distant ones.

5.4 E2FCA Step 1: Supply-to-Demand Ratio (Rj)

In the beginning step of the Enhanced 2FSCA method, we identified the set of demand
locations that fall within a predefined search radius of every supply point. This step provides the
foundation for calculating the supply-to-demand ratio Rj. To implement this process, we used
Python and several scientific libraries including GeoPandas for spatial data handling, NumPy for
numerical operations, SciPy’s cKDTree for efficient nearest neighbor search, and Matplotlib for
visualization. All supply datasets from markets, restaurants, and bus stops were merged into a
single supply layer and matched with the building dataset that represents the demand side. All
points were projected to the same UTM coordinate system to ensure correct distance
computation in meters.

A spatial index was built using cKDTree, which computes Euclidean distances between
points. For each supply point j, the tree identified all demand points i located within an 800
meter search radius. This radius matches the scale of the USC DPS study area and is widely used
in urban accessibility research involving walking distance. The neighborhood search follows the
standard E2SFCA distance rule formulated as:

d(i, ]) < do

where d(i, j) is the Euclidean distance between demand i and supply j, and dbo is the catchment
threshold.

Two visualizations were produced to illustrate this step. Figure 21 presents the spatial
arrangement of all demand points and the combined supply points across the study area. Figure
22 displays the complete set of supply catchments generated by the KDTree search. Each gray
line represents a connection between a supply point and all demand locations within its
catchment radius. This figure confirms that the algorithm correctly captured local clusters and
distance-based relationships across the network. Together, these results validate that the
supply-side catchments were constructed correctly and are ready for computing Rj in the next
step.



166 Supply & Demand Distribution used in E2FCA Step 1

Demand
e Supply

3.7670

3.7665

3.7660

3.7655 A

3.7650 A

3.7645 A

3.7640 -

T T T T T T T
380000 380500 381000 381500 382000 382500 383000
X

Figure 21. Supply and Demand Distribution used in E2FCA Step 1
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5.5 E2FCA Step 2: Accessibility Score (Ai)

The next step of the E2SFCA method computes the accessibility score for each demand
location. This score, denoted as A4i, represents the cumulative opportunity available to a given
building after accounting for all accessible supply locations and the effect of distance decay. The
analysis was implemented entirely in Python for consistency with the previous steps. Libraries
used include GeoPandas for spatial data handling, NumPy and pandas for data processing,
SciPy’s cKDTree for efficient spatial queries, and Matplotlib for visualization.

In this step, each demand point searches for all supply locations within the distance
threshold of 800 meters. The pre-computed supply to demand ratio Rj from Step 1 is then
assigned to each demand point using a Gaussian decay function based on the distance between
the demand and supply points. The decay function used is

ot e (- )

where d is the Euclidean distance and ¢ controls the rate of decay. For this study, ¢ was
set to 300 meters to reflect typical walking distance conditions in urban Los Angeles. The
accessibility score for each demand point is calculated as:

Ai=)  Rj-w(dy)
J
which aggregates the weighted influence of all accessible supply sites.

Figure 23 illustrates the spatial distribution of accessibility across all buildings in the
study area. Demand points are symbolized using a continuous color gradient where higher
accessibility scores appear in yellow and lower values appear in dark blue. Supply locations are
shown as red points to highlight their spatial influence on surrounding neighborhoods. The map
reveals clear spatial clustering of accessibility, with central portions of the USC DPS area
achieving higher scores due to denser supply coverage and favorable proximity patterns.
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To support interpretation, summary statistics of the computed accessibility values were
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Figure 23. E2FCA Step 2 Accessibility Scores (Ai)
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from 2.44 to 22.86 as shown as the below. These statistics provide a quantitative description of

spatial inequality in accessibility and serve as the foundation for the comparisons presented in

the Results section.

===== Accessibility (Ai) Statistics =====
count 3707.000000

mean 9.596756
std 4.423208
min 2.441762
25% 5.814084
50% 9.694189
75% 12.476670
max 22.864956

Name: Ai, dtype: floaté64

5.6 Composite Accessibility Index (CAI)

To provide an integrated measure of overall accessibility within the USC DPS study area,

we computed a Composite Accessibility Index (CAI) by combining the accessibility scores
generated for markets, restaurants, and bus stops. The CAI captures the joint contribution of
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multiple daily-life resources and enables a more holistic interpretation of spatial inequality in
access. The analysis was carried out in Python using pandas, numpy, geopandas, and matplotlib.
The workflow followed the same logic used in earlier E2FCA steps, and the final index was
derived after normalizing and aggregating the three accessibility components.

We first applied min-max normalization to each accessibility layer to ensure that markets,
restaurants, and bus stops contributed comparably to the final composite score. The
normalization process used the following formula.

A - A — min(A)
max(A) — min(A)

where 4’ represents the normalized accessibility value and 4 is the original E2FCA score.
Following normalization, the Composite Accessibility Index was computed using a simple
average of the three resource-based scores:

C A I — A;narket + A;estaurant + A{)us
3

This approach treats all resources equally and aligns with the goal of identifying general
accessibility advantages rather than prioritizing a single resource type. However, Figure 24
shows the statistical distribution of the resulting CAI values. The distribution is right-skewed,
with most values concentrated between 0.05 and 0.30. The summary statistics also support this
pattern. The mean CAI is approximately 0.23, and the third quartile reaches 0.31, indicating a
relatively small proportion of locations with high overall accessibility. These characteristics are
consistent with urban environments where access to multiple resources tends to cluster around
central corridors.

Spatial patterns of the CAI are illustrated in Figure 25. Higher composite scores appear
around the central east region of the study area, where market density, restaurant density, and bus
stop availability overlap. Lower CAI values dominate the western and southern edges, which are
farther from the major resource clusters. The combined representation highlights areas with
strong multimodal access as well as neighborhoods that may benefit from future improvements
in local services.

To help interpret how each resource contributed to the composite measure, Figure 26
compares the spatial distribution of market, restaurant, bus stop accessibility, and the final CAIL
The CAI map aligns closely with the spatial gradients found in the bus stop and restaurant layers,
suggesting that these two resources exert stronger influence on the overall accessibility pattern in
the DPS area. The market accessibility layer shows similar but slightly narrower clusters, and its
inclusion in the composite index helps create a more stable and balanced measure across the
entire study region.

6. Exploratory Data Analysis

6.1 Building Distribution
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We conducted an exploratory data analysis to characterize the spatial structure of the built
environment and the placement of key resources in the USC DPS area before performing the
accessibility computations. The goal of this stage was to establish the spatial context in which
accessibility is produced and to describe the underlying patterns that influence later results.
Building locations, markets, restaurants, and bus stops were extracted from OpenStreetMap and
processed entirely in Python using GeoPandas, Shapely, and OSMnx. These libraries allowed us
to retrieve point geometries, reproject them into the projected coordinate system used in the
accessibility model, and visualize their spatial patterns. The preprocessing also included
coordinate transformation using the GeoPandas function .zo crs(), which ensured that all input
layers were aligned in the same projected space for distance-based calculations.

The spatial distribution of buildings provides the foundational representation of the built
environment. The building points we retrieved from OpenStreetMap showed a regular block-like
structure that matches the surrounding street grid. Dense clusters of buildings were observed
along residential blocks, while open areas such as athletic fields and large parking lots had
noticeably fewer structures. This pattern illustrates how population-related demand is likely
concentrated along housing blocks, which becomes an important reference when interpreting
accessibility outcomes.

We also examined the spatial distribution of markets and restaurants, which represent two
of the primary service types in our accessibility model. Their locations were mapped in Python
using Matplotlib, and the resulting distributions are displayed in Figure 25 titled “Market
Accessibility” and Figure 25 titled “Restaurant Accessibility.” The restaurant distribution
showed greater spatial density and wider coverage than markets, which aligns with expectations
given the USC area’s concentration of student-oriented dining options. Markets appeared less
frequent and more clustered in specific blocks, which suggests that food provisioning
opportunities are unevenly distributed across the neighborhood.

Bus stop locations were visualized to represent transit availability and to support the later
accessibility calculation. As shown in Figure 25 titled “Bus Stop Accessibility,” the transit
network revealed a linear pattern following major streets, with higher densities along Vermont
Avenue and Jefferson Boulevard. This transportation layer provides essential mobility support in
the accessibility model since transit nodes strongly influence how easily residents may reach
food-related destinations.

For all three types of resources, we applied a distance decay—based accessibility
calculation using a Gaussian decay function implemented in Python. The formulation used for
each service type was:

dz.
Ai = Zexp (_2;2) ’
J



28

where Ai denotes accessibility at building 7, dl,j shows the Euclidean distance between

building i and service location j, and ¢ controls the rate of decay. This formula was computed
using NumPy vectorization to ensure efficient processing across thousands of building points.
After generating individual accessibility surfaces for markets, restaurants, and bus stops, we
standardized each score to the range [0,1] using min—max normalization and constructed a
composite accessibility index by averaging the three standardized components.

The distributions of these accessibility scores were visualized in Python using Matplotlib.
Figures 25 display the spatial patterns for market, restaurant, and bus stop accessibility
respectively, while Figure 25 summarizes the combined accessibility surface. High composite
accessibility values emerged near street intersections where resources were most concentrated.
Lower values appeared near the southern and western edges of the study area where both food
destinations and bus stops were sparse. To further illustrate the statistical distribution of the
composite index, we generated a histogram shown in Figure 24. The histogram indicates that
most buildings fall within the lower to mid range of accessibility scores, while a smaller portion
achieves high accessibility due to proximity to multiple overlapping service types.

Distribution of Composite Accessibility Index (CAIl)
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Figure 24. Distribution of Composite Accessibility Index (CAI)
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Figure 25. Composite Accessibility Index (CAI) Map

Together, these exploratory analyses allow us to establish a clear understanding of how
built form and resource locations shape accessibility patterns. The spatial structures observed in
Figures 26 form the foundation for the interpretations presented in the subsequent sections of the
report

7. Results

We evaluated accessibility patterns across the USC DPS study area by analyzing
resource-specific accessibility scores derived from the E2SFCA method. The accessibility results
were calculated in Python using GeoPandas, Pandas, NumPy, and Matplotlib, together within a
Gaussian distance decay function of the form as following formula:

w(d) = e (@/20%)

This function assigned higher weights to closer facilities, which allowed us to model
realistic walking access within the neighborhood. The Python workflow integrated the demand
and supply datasets processed earlier, computed weighted catchment areas for each market,
restaurant, and bus stop, and then aggregated the weighted supply contributions to obtain
point-level accessibility scores for all demand locations. After calculating the resource-specific



30

accessibility indices, we merged the results into a Composite Accessibility Index (CAI) that
summarizes overall access to essential daily resources.

The spatial patterns reveal important contrasts across resource types. The market
accessibility distribution shows clusters of high values near Vermont Avenue and Jefferson
Boulevard, where multiple small markets are located. These patterns are illustrated in Figure 26:
Market Accessibility Map, which highlights several accessibility hotspots close to dense
residential blocks. Restaurant accessibility, shown in Figure 26: Restaurant Accessibility Map, 1s
more spatially concentrated. High accessibility zones appear mainly near the USC Village
commercial area, while regions farther east show lower values because restaurants there are more
dispersed. Bus stop accessibility exhibits a different pattern. As shown in Figure 26: Bus Stop
Accessibility Map, accessibility is generally high across most parts of the study area because bus
stops are evenly distributed along major streets such as Vermont Avenue, Exposition Boulevard,
and Jefferson Boulevard.
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Figure 26. Accessibility Comparison Across Resource Types
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We then examined overall accessibility by integrating the three resource-specific indices.
The resulting composite index reflects the combined ease of reaching markets, restaurants, and
bus stops. Figure 25 shows that the highest CAI values occur near the western boundary of the
DPS zone, where market density, restaurant availability, and bus stop coverage overlap. This
result indicates that the area near USC Village and Vermont Avenue consistently offers broader
access to daily resources. To further understand the statistical distribution of CAI scores, we
plotted a histogram using Python’s Matplotlib library. Figure 24 shows that most locations fall
within a moderate accessibility range, with fewer extremes at the low and high ends. We also
generated a kernel density curve to visualize the continuous CAI distribution. As seen in Figure
27, the distribution has a single dominant peak, which suggests that resource accessibility across
the study area is relatively cohesive although some pockets of lower access remain.

Kernel Density Estimate of CAl Distribution
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Figure 27. Kernel Density Estimate of CAIl

Finally, we compared the resource types side by side to understand how accessibility
levels differ across markets, restaurants, and bus stops. Figure 26 presents a four-panel
visualization of the three resource-specific indices together with the composite index. This figure
demonstrates that although bus stop accessibility is consistently high, market and restaurant
accessibility vary more significantly across the area. The composite index reflects this
imbalance, producing an overall accessibility pattern that is strongest where all three resource
types align. Collectively, these results provide a clear understanding of accessibility disparities
within the DPS area and establish the foundation for the interpretation and discussion that follow
in Section 8.



32

8. Discussion
8.1 Key Findings

In our study, we found that accessibility patterns within the USC DPS area vary
substantially across different types of daily resources. Markets, restaurants, and bus stops
demonstrate different spatial structures, and these differences directly influence the Composite
Accessibility Index. Market accessibility tends to form localized hotspots near the western
portion of the DPS area, while restaurant accessibility clusters strongly around the USC Village
commercial zone. Bus stop accessibility is more uniform because transit stops are placed along
major streets, which produces consistently higher accessibility values across much of the area.
When we combined these resource specific measures into the Composite Accessibility Index, the
results showed that the highest overall accessibility appears in locations where multiple resource
types intersect. This confirms that resource co-location plays an important role in shaping spatial
advantage within walkable neighborhoods.

8.2 Interpretation of Spatial Patterns

The spatial patterns we observed provide insights into how the built environment shapes
daily mobility opportunities for residents and students. Areas with high CAI values generally
occur close to Vermont Avenue and Jefferson Boulevard where restaurants, markets, and bus
stops are concentrated. These areas benefit from short walking distances and dense supply
distributions. In contrast, the southern and eastern parts of the DPS area show lower CAI values
because they contain fewer markets and restaurants and sometimes lack nearby bus stops. This
outcome is consistent with the Gaussian distance decay formulation we implemented in Python
because greater distances sharply reduce accessibility contributions. The maps produced in our
results section, including the Market Accessibility Map, Restaurant Accessibility Map, Bus Stop
Accessibility Map, and the Composite Accessibility Index Map, illustrate how supply density
and walkable distances work together to shape uneven accessibility across the neighborhood.
The histogram and kernel density visualizations provide additional evidence that high
accessibility conditions are confined to a smaller fraction of buildings, which reflects common
patterns in compact urban environments.

8.3 Relationship to Existing Studies

The spatial trends revealed in our analysis align with earlier findings in the accessibility
literature. Luo and Wang’s 2SFCA model emphasizes the relationship between supply
distribution and population demand, and our results confirm that these principles hold even at the
micro scale. The improved distance weighted E2SFCA method described by Luo and Qi
performs well in the DPS area because the Gaussian decay function helps represent real walking
behavior. Our observed clustering of high accessibility near commercial corridors matches the
observations of Jamtsho and Corner, who note that dense urban blocks amplify accessibility
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contrasts at small spatial scales. The general right skewed distribution of accessibility values also
mirrors the conditions described by Delamater in studies of service concentration. Overall, our
findings support the broader research that shows accessibility is not only a function of supply
counts but also of spatial proximity and underlying neighborhood structure.

8.4 Limitations

Although our workflow produced meaningful and consistent results, several limitations
exist in both the datasets and the methods. OpenStreetMap building footprints may not perfectly
represent actual structures, and their level of detail varies across the study area. The Google
Places and OSM points for markets and restaurants may omit recently opened or closed
businesses, and their assigned capacity values are simplified. We applied equal supply capacities
because building specific service volume data are unavailable. The distance calculations rely on
Euclidean distance rather than network based distance because of methodological consistency
with our Python implementation. This simplification may underestimate walking distance in
areas with irregular road networks or restricted pedestrian paths. The Composite Accessibility
Index also treats all resources equally, which may not reflect actual demand preferences among
residents. Despite these limitations, the accessibility patterns we identified remain consistent
with known local conditions, and the overall methodology follows the expectations outlined in
the course instructions.

8.5 Future Work

Future studies could expand the analysis by incorporating additional resource types such
as pharmacies, recreation areas, or student service facilities. A network based accessibility model
could produce more accurate walking distances, especially near complex intersections or gated
areas. The Composite Accessibility Index could also be refined by assigning different weights to
resources based on survey data or behavioral models. Another direction would be to examine
temporal variation in accessibility, especially for restaurants and bus stops that operate on
varying schedules. Finally, the workflow could be extended beyond the DPS boundary to
compare accessibility conditions between the USC campus and nearby residential
neighborhoods. These extensions would help situate the DPS area within a broader urban context
and provide more nuanced insights into resource availability and pedestrian mobility.

9. Conclusion

In conclusion, our study demonstrates that micro scale accessibility within the USC DPS
area is shaped by the combined effects of resource distribution, walking distance, and the spatial
configuration of the built environment. By applying the E2SFCA method with a Gaussian
distance decay function, we were able to quantify the accessibility of markets, restaurants, and
bus stops at the building level. The results reveal clear spatial inequalities across the
neighborhood. Locations near major commercial corridors achieve high accessibility, while
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buildings along the southern and eastern edges experience limited access to essential services.
The Composite Accessibility Index provides a holistic summary of these conditions by
integrating all resource categories into a single measure. This index helps highlight the areas
where service availability and pedestrian mobility are strongest. The findings not only answer
our research questions but also demonstrate the value of combining Python based spatial
computation with distance weighted accessibility models. The workflow is reproducible,
scalable, and well suited for analyzing daily life resources in compact urban environments. Our
results contribute to the understanding of accessibility around USC and provide a foundation for
future improvements in service distribution and urban design.

10. Contribution

This project was completed through a collaborative effort among Xianhao Pan, Chenyi
Weng, and Xiaocheng Zhang. All team members contributed to identifying data sources and
collecting the spatial datasets used in this study, including the USC DPS boundary, building
footprints, Google Places resources, and OpenStreetMap features. Chenyi Weng and Xiaocheng
Zhang were primarily responsible for designing and producing the visualizations used
throughout the analysis. Their work included developing the accessibility maps for markets,
restaurants, and bus stops, as well as the Composite Accessibility Index and the distribution
figures generated through Python. They also implemented key components of the spatial
workflow, such as projection management, distance computation, and the construction of the
E2SFCA calculations. Xianhao Pan focused on the written components of the study, ensuring
that the literature review, methodological descriptions, and analytical discussions were clearly
articulated and aligned with the course guidelines. He also contributed to data preparation and
verification to ensure accuracy across all resource layers. Together, we designed the analytical
framework, interpreted the results, and shaped the overall structure of the final project. Our
combined efforts allowed us to complete a fully integrated accessibility assessment that meets
the analytical and communication goals of the course.
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