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1. Spatial Data Representation and Wrangling 

1 (a) Enabling and Displaying the Spatio-Temporal Pattern 

To visualize the spatio-temporal pattern of earthquake and water-injection activity in 

Oklahoma, both datasets were first projected into the same coordinate system to ensure spatial 

consistency. The Project tool in ArcGIS Pro was used to convert OK_earthquakes_Project and 

OK_well_injection_Project to NAD 1983 UTM Zone 14N, as shown in Figure 1 and Figure 2. 

This projection ensures accurate measurement of distances and alignment between the two 

layers, which is essential for later spatial comparison and cube generation. 

 

Figure 1. Project tool settings for OK_earthquakes_Project to NAD 1983 UTM Zone 14N.​

 

Figure 2. Project tool settings for OK_well_injection_Project to NAD 1983 UTM Zone 

14N. 
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After projection, the attribute table of OK_earthquakes_Project was examined, and the 

updated_Converted field was confirmed as the temporal variable. Two one-year intervals, 2013 

and 2017, were chosen to illustrate changes in earthquake locations over time. The one-year 

interval was selected because it provides a clear comparison of spatial distributions across 

different periods while maintaining adequate temporal detail. Using Select By Attributes, records 

were filtered with SQL expressions such as "updated_Converted" >= DATE '2013-01-01' AND 

"updated_Converted" < DATE '2014-01-01' and "updated_Converted" >= DATE '2017-01-01' 

AND "updated_Converted" < DATE '2018-01-01'.​

​ The results are displayed in Figure 3 and Figure 4. In 2013, earthquake events were 

mostly concentrated in the northern and eastern regions of Oklahoma, whereas by 2017 the 

activity had expanded toward the central part of the state. These changes reveal a clear spatial 

expansion of seismic activity that may correspond to increased subsurface fluid-injection 

operations during that period. 

 

Figure 3. Earthquakes in 2013 



3 

 

Figure 4. Earthquakes in 2017 

1 (b) Identifying Fields with Missing Data 

A detailed review of both datasets was conducted to identify fields containing missing or 

incomplete data. In the earthquake dataset, the field nst, which represents the number of seismic 

stations used to determine each event, contained several NULL values. These missing records 

are visible in Figure 5. Missing nst values typically occur when small-magnitude earthquakes are 

recorded by too few sensors or when station data are incomplete. 

 

Figure 5. Missing values (NULL) in the nst field of OK_earthquakes_Project 
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In the water injection dataset, the field Volume_BPD contained a large number of zero 

values that do not represent true measurements but rather missing or unreported injection 

volumes. These pseudo-missing values are shown in Figure 6. Although technically valid 

numeric entries, the zeros could bias later analyses by under-representing injection intensity. 

Identifying these two problematic fields was an important step to ensure data quality before 

temporal aggregation and cube construction. 

 

Figure 6. Zero (pseudo-missing) values in the Volume_BPD field of 

OK_well_injection_Project 

1 (c) Fixing the Missing Data and Justifying the Approach 

To address the missing and pseudo-missing values, the Field Calculator was used to 

create corrected fields. For the earthquake dataset, a new field named nst_fixed was added. The 

Python expression “1 if !nst! is None else !nst!” was applied to replace NULL values with 1, 

since every earthquake event should be recorded by at least one seismic station. The Field 

Calculator setup is illustrated in Figure 7. This correction guarantees that all events maintain 

valid station counts, avoiding data gaps that might affect magnitude statistics or clustering 

analyses. 
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Figure 7. Field calculation setup for nst_fixed showing Python expression replacing NULL 

values 

For the water-injection dataset, a new field named Volume_fixed was created to replace 

unrealistic zeros in the Volume_BPD field. The average injection volume, 2886.476683 barrels 

per day, was calculated and substituted for zero values using the Python expression 

“2886.476683 if !Volume_BPD! == 0 else !Volume_BPD!”, as displayed in Figure 8. Using the 

mean value as a replacement preserves the dataset’s central tendency and prevents 

underestimation of injection intensity caused by missing reports. Because the missing entries 

were scattered randomly across both time and space, interpolation or regression would not have 

produced more reliable results. This simple but robust imputation method maintains the overall 

data distribution and supports consistent statistical analysis. 
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Figure 8. Field calculation for Volume_fixed showing replacement of 0 with mean value 

After these modifications, both datasets contained continuous numeric values suitable for 

temporal aggregation. The cleaned datasets are now ready for the creation of space time cubes 

and subsequent spatial-temporal analyses. These preprocessing steps improve data integrity, 

minimize bias, and ensure compatibility between the earthquake and injection datasets for further 

correlation studies. 

2. Representing Spatio-Temporal Data 

2 (a) Oklahoma Earthquake Space Time Data Structure 

To represent the spatio-temporal distribution of earthquake events in Oklahoma, the 

Create Space Time Cube by Aggregating Points tool in ArcGIS Pro was employed. The input 

dataset, OK_earthquakes_Project, contained temporal information stored in the 

updated_Converted field. A space-time cube was generated as a NetCDF file 

(OK_earthquakes_cube.nc) with a temporal resolution of three months and a spatial grid size of 

10 × 10 kilometers using the fishnet shape type. Each grid cell aggregates the mean earthquake 
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magnitude values occurring within its spatial boundary during each three-month period. This 

configuration ensures that the dataset includes at least ten temporal slices, providing sufficient 

temporal depth to capture both short-term fluctuations and long-term trends in seismic activity. 

The chosen three-month interval helps smooth irregular earthquake occurrences while 

maintaining enough temporal detail to detect seasonal variations. Likewise, the 10 km fishnet 

grid provides an appropriate balance between spatial precision and computational efficiency. It is 

fine enough to distinguish localized clusters while broad enough to avoid fragmentation of sparse 

events. The resulting cube establishes a consistent framework for spatio-temporal analysis, 

allowing for systematic examination of how earthquake activity has evolved across the state over 

time. This structure will later support analyses such as trend detection and hot spot mapping. 

As illustrated in Figure 9, the ArcGIS tool interface displays the parameter configuration 

used to build the space-time cube, including the three-month interval and 10 km fishnet 

aggregation. Figure 10 presents a 2D visualization of the earthquake cube. Each gray cell 

represents a 10 × 10 km grid aggregated over three months, summarizing average earthquake 

magnitudes throughout Oklahoma. The visualization reveals spatial clusters of higher activity in 

north-central and southern regions of the state, indicating potential fault zones where earthquakes 

occur more frequently. 
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Figure 7. Tool setup for creating the Oklahoma earthquake space time cube 

 

Figure 8. Visualization of the Oklahoma earthquake space time cube in 2D 
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2 (b) Oklahoma Water Injection Space–Time Data Structure 

A parallel space-time representation was constructed for the water injection dataset 

OK_well_injection_Project to enable direct comparison with the earthquake data. Before 

generating the cube, two key attribute fields were created to ensure correct temporal and 

numerical formatting. First, a new date field named Report_Date_Converted was derived from 

the original Report_Date field to store proper date values. Second, a numeric (double) field 

named Volume_BPD_Fixed was calculated to represent daily injection volumes as floating-point 

numbers. These pre-processing steps ensured that the cube tool could interpret both temporal and 

quantitative attributes accurately. 

The Create Space Time Cube by Aggregating Points tool was then applied using 

Report_Date_Converted as the time field and Volume_BPD_Fixed as the summary field. Each 

cube bin covered a 10 × 10 km grid cell and aggregated data at a three-month interval, consistent 

with the earthquake cube. The summary statistic was set to Mean, and empty bins were filled 

with zeros to preserve temporal continuity. This configuration captures both spatial distribution 

and seasonal variation in injection activity while minimizing bias from missing records. The 

three-month interval also corresponds to typical industry reporting cycles for injection 

operations, ensuring that temporal aggregation aligns with operational patterns. 

As shown in Figure 11, the parameter settings for the water injection cube mirror those of 

the earthquake cube to maintain analytical consistency. Figure 12 illustrates the 2D visualization 

of the water injection space-time cube. Each gray grid cell indicates the average injection volume 

aggregated over three-month periods. The spatial pattern highlights major injection regions 
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across northern and central Oklahoma, revealing the geographical concentration of high-volume 

injection wells. 

 
Figure 11. Tool setup for creating the Oklahoma well injection space time cube 

 

Figure 12. Visualization of the Oklahoma well injection space time cube in 2D 
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The consistent design of the two space-time cubes, both with 10 km spatial resolution and 

three-month temporal intervals, enables direct spatial and temporal correlation between seismic 

activity and injection intensity. This balanced structure offers adequate detail for trend 

identification while maintaining computational efficiency for subsequent analyses such as 

emerging hot spot detection and cross-cube comparison. The uniform cube configuration ensures 

that the patterns derived from both datasets can be compared meaningfully within the same 

spatial and temporal framework. 

3. Data Visualization 

3 (a) Temporal Distribution of Earthquakes and Water Injection Records (2013–2017) 

The temporal distribution of earthquake occurrences and water injection activities in 

Oklahoma between 2013 and 2017 was examined to understand how both phenomena changed 

over time. Figure 13 presents a histogram of earthquake occurrences by year. The figure shows 

that seismic activity was relatively low in 2013 and 2014, followed by a sharp increase that 

peaked in 2015 and 2016, before declining again in 2017. The overall distribution forms a 

unimodal pattern centered around 2015, indicating that the middle years of the study period 

experienced the highest frequency of earthquakes. 

 
Figure 13. Histogram of Earthquake Occurrences by Year (2013–2017) 
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Figure 14 displays the annual frequency of water injection records over the same period. 

The number of injection operations rose steadily after 2014, reaching its maximum in 2016 and 

2017, and then decreased noticeably in 2018. This pattern demonstrates a period of intensified 

water injection activities in the mid 2010s, consistent with an overall expansion of oil and gas 

operations that relied on underground fluid disposal. 

 

Figure 14. Annual Frequency of Water Injection Records (2013–2017) 

When comparing Figure 13 and Figure 14, a similar temporal trend can be observed 

between the two datasets. Both the earthquake occurrences and water injection activities reached 

their respective peaks around 2015–2016 and declined afterward. This resemblance in timing 

suggests a potential temporal correlation between increased injection operations and higher 

seismic activity during the study period. While this analysis does not establish causation, it 

highlights a clear synchronization between the intensification of human-induced subsurface 

activities and the rise in earthquake frequency, providing a foundation for further spatial and 

statistical analyses in the subsequent sections. 

3 (b) Data Clock Visualization for Earthquake Magnitude and Water Injection Rate 

The data clock visualizations were produced to examine the temporal patterns of 

earthquake magnitude and water injection rate in Oklahoma from 2013 to 2017. The first data 
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clock, shown in Figure 15, illustrates the distribution of average earthquake magnitude over 

time. The rings represent years, while the wedges represent months. Darker blue shades indicate 

periods with higher mean earthquake magnitudes. The figure shows that seismic activity 

increased notably in 2015 and 2016, with slightly stronger magnitudes concentrated in the 

summer and early autumn months, suggesting seasonal variations in seismic behavior during the 

mid-study period. 

 
Figure 15. Data Clock of Earthquake Magnitude (2013-2017) 

The second data clock, presented in Figure 16, depicts the mean water injection rate for 

the same period. Similar to the earthquake data, the rings denote years and the wedges denote 

months, with darker blue tones indicating higher injection volumes. The data clock reveals that 

water injection rates peaked between 2015 and 2016 and remained relatively high through 2017. 

The gradual color intensification from 2014 to 2016 reflects an increasing injection activity 

pattern across both time and season. 

 
Figure 16. Data Clock of Water injection Rate (2013-2017) 
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When comparing the two visualizations, both exhibit elevated activity in 2015 and 2016, 

suggesting a temporal overlap between higher injection rates and increased seismic magnitudes. 

This synchronicity provides preliminary evidence of a potential relationship between fluid 

injection intensity and regional seismic responses over time. 

3 (c) Space-Time Trend Visualization for Water Injection Data 

To analyze long-term spatial and temporal patterns in both earthquake activity and water 

injection operations across Oklahoma from 2013 to 2017, the Visualize Space Time Cube in 2D 

tool was applied to the two datasets. The input files included the earthquake space-time cube 

(OK_earthquakes_cube.nc) and the water injection cube (OK_well_injection_cube.nc). For the 

earthquake cube, the variable COUNT was used to represent the frequency of events within each 

10-kilometer grid cell. For the water injection cube, the variable 

VOLUME_BPD_FIXED_MEAN_ZEROS was selected to represent the average daily injected 

volume of fluid. The Trends display theme was chosen in both cases to detect the overall 

temporal changes in each location. 

Each output layer was visualized using graduated color symbology based on the Trend 

z-score field. The Natural Breaks (Jenks) classification method with five color classes was 

applied, ranging from yellow (representing decreasing or stable trends) to red (indicating 

increasing trends). The earthquake trend map (Figure 17) shows clusters of positive z-scores 

concentrated in central and northern Oklahoma, suggesting areas with a consistent increase in 

earthquake frequency over time. Similarly, the water injection trend map (Figure 18) reveals 

strong positive z-scores in the same regions, particularly around north-central Oklahoma, where 

injection volumes have significantly increased. 
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Figure 17. Space-Time Trend Visualization of Earthquake Frequency in Oklahoma (2013–2017) 

 
Figure 18. Space-Time Trend Visualization of Water Injection Rate in Oklahoma (2013–2017) 
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The spatial overlap of upward trends in both injection rate and earthquake frequency 

highlights a potential relationship between increased wastewater injection activity and elevated 

seismic occurrences. These findings visually reinforce the temporal correlation between 

human-induced subsurface fluid injection and the surge in earthquake events observed during the 

mid-2010s. 

3 (d) Time Series Pattern Analysis 

The selected study area focuses on Central Oklahoma, which includes Oklahoma City 

and surrounding counties, an area recognized for significant induced seismicity between 2013 

and 2017. Figure 19 shows the monthly variation of mean earthquake magnitude derived from 

the layer EQ_CentralOK_Selected. The time series reveals relatively stable and low magnitudes 

from 2013 to 2015 (around 2.8–3.0), followed by a sharp increase in 2016 and 2017, when 

several events exceeded magnitude 4. This pattern indicates a notable escalation of seismic 

activity in the later years. 

 

Figure 19. Time Series of Earthquake Magnitude in Central Oklahoma (2013–2017) 

Figure 20 displays the average monthly water injection rate extracted from 

Injection_CentralOK_Selected. From 2013 to 2014, the injection rate exceeded 20,000 barrels 
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per day but decreased steadily through 2015 and dropped sharply around mid-2016, remaining at 

a low and stable level thereafter. Comparing the two charts, a negative temporal relationship can 

be observed: while the injection rate declined significantly after 2015, the earthquake magnitude 

increased during 2016 and 2017. This inverse trend suggests that changes in injection practices 

may have altered subsurface stress conditions, contributing to short-term fluctuations in seismic 

activity. 

 
Figure 20. Time Series of Water Injection Rate in Central Oklahoma (2013–2017) 

4. Calculating earthquake risk in 2010. 

4 (a) Select and merge all data sources for 2010 at the census tract level 

To prepare the data for the earthquake risk analysis in 2010, all datasets were first 

projected to a consistent coordinate system, NAD 1983 UTM Zone 14N, to ensure spatial 

alignment. The datasets included four major layers: earthquake occurrences, water injection 

wells, school locations, and traffic volume points. Each dataset was clipped to the boundary of 

the Oklahoma census tracts using the Clip tool, with the 2010 census tract layer 

(census_tracts10_Project) serving as the boundary polygon. This step ensured that all data were 

restricted to the official study area and shared identical spatial extents. 

After clipping, each thematic dataset was aggregated to the census tract level using the 

Spatial Join tool. The join operation was set to One-to-one with the Intersect match option, 
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allowing point features to be summarized within their respective census tracts. For the 

earthquake layer, the number of earthquake events and the mean earthquake magnitude were 

calculated. For the school layer, the number of schools per tract was summarized. The traffic 

layer was processed to obtain the mean traffic volume for each tract, and the water injection layer 

was used to compute the mean daily injection rate. These spatial joins resulted in intermediate 

layers named Tract_EQ_Joined, Tract_School_Joined, and Tract_Traffic_Joined. 

Finally, all layers were merged into a single integrated dataset named 

OK_Census2010_Integrated, which contains the summarized attributes for each census tract in 

Oklahoma. This layer represents the foundational dataset for subsequent analysis of earthquake 

risk in 2010. The final integrated map of Oklahoma census tracts is shown in Figure 21, which 

displays the complete spatial coverage of the study area and confirms that all integrated data fall 

within the state boundary. 

 
Figure 21. Integrated Census Tracts and Thematic Data in Oklahoma (2010) 
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4 (b) Defining Scaled Indices for Each Variable 

To normalize all variables and allow meaningful comparison across different magnitudes, 

a scaled index was defined for each dataset using the standard formula (value − minimum) 

divided by (maximum − minimum). The attribute table of the integrated dataset named 

OK_Census2010_Integrated was opened, and five new fields were created in sequence with the 

data type set to Float. These new fields were Pop_Index, Traffic_Index, EQ_Index, 

School_Index, and Injection_Index, representing the normalized ratios of population, traffic 

count, earthquake frequency, school count, and injection volume, respectively (Figure 22). 

 
Figure 22. Newly added index fields in the attribute table of OK_Census2010_Integrated 

To determine the value ranges required for standardization, the Summary Statistics tool 

was applied to the integrated table with five selected variables: P0010001, Traffic_Count, 

EQ_Count, School_Count, and Volume_BPD_Fixed. Both minimum and maximum statistics 

were calculated for each variable, and the resulting output table, named OK_FieldStats, 

summarized the minimum and maximum values used in the subsequent normalization process. 

The results indicated that the minimum and maximum of P0010001 were 31 and 12083, the 

minimum and maximum of Traffic_Count were 0 and 78658, the minimum and maximum of 

EQ_Count were 0 and 133, the minimum and maximum of School_Count were 0 and 8, and the 

minimum and maximum of Volume_BPD_Fixed were 0 and 12000 (Figure 23, Table 1). 
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Figure 23. Summary Statistics tool interface showing selected fields and output table 

OK_FieldStats. 

Using these reference values, each of the five new index fields was calculated with the 

Field Calculator tool by entering the appropriate Python expressions. For the population, the 

expression was written as “(!P0010001! − 31.0) / (12083.0 − 31.0)” to scale the population 

variable between 0 and 1. Similarly, traffic count was calculated as “(!Traffic_Count! − 0.0) / 

(78658.0 − 0.0)”, earthquake frequency was calculated as “(!EQ_Count! − 0.0) / (133.0 − 0.0)”, 

and school count was calculated as “(!School_Count! − 0.0) / (8.0 − 0.0)”. The injection volume 

required special handling due to the presence of Null values in the original data. To avoid 

calculation errors, a Python function was written within the Field Calculator using a code block 

that first checked whether the input value was None. If it was not None, the formula “(value − 

0.0) / (12000.0 − 0.0)” was applied to calculate the Injection_Index; otherwise, the field was set 

to Null. 
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After applying all expressions, the resulting index values were examined and confirmed 

to fall within the range of 0 to 1, representing the relative proportion of each variable within the 

study area. Records with missing injection data were automatically assigned Null values, which 

did not affect subsequent analyses. This process successfully produced five standardized indices 

that provide a consistent basis for the construction of the composite index in the following step 

(Figure 24). 

 

Figure 24. Resulting standardized index values for population, traffic, earthquake, school, and 

injection variables. 

4 (c) Define the final risk index by adding all the indexes computed in the previous step. 

The final risk index was designed to represent the overall exposure level of each census 

tract by integrating five standardized indicators derived in the previous step: population density 

(Pop_Index), traffic volume (Traffic_Index), earthquake frequency (EQ_Index), school density 

(School_Index), and water injection volume (Injection_Index). A new floating-point field named 

Final_Risk_Index was added to the attribute table of OK_Census2010_Integrated, with six 

decimal places to ensure sufficient precision. The calculation was performed using the Field 

Calculator in Python mode, applying a custom function that summed all available indices while 

automatically excluding any null values. 
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The Python expression used was calc_final(!Pop_Index!, !Traffic_Index!, !EQ_Index!, 

!School_Index!, !Injection_Index!).​

​ The corresponding code block was defined as follows: 

 

This function ensured that missing data did not cause computational errors and that the 

resulting risk index remained scaled between 0 and 1. After running the calculation, the resulting 

Final_Risk_Index values ranged approximately from 0.02 to 0.52. Higher index values represent 

census tracts that experience greater combined exposure to human activity and potential 

environmental stressors. 

Figure 25 illustrates the spatial distribution of the final risk index across Oklahoma. The 

map employs a graduated color ramp ranging from light yellow (lowest risk) to dark red (highest 

risk). The results show that areas located in northern and central Oklahoma tend to have 

relatively higher risk values, while peripheral regions exhibit lower overall exposure. This 

composite risk visualization provides a comprehensive overview of spatial vulnerability patterns 

across the state, integrating demographic, infrastructural, and environmental factors. 
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Figure 25. Final Risk Index of Oklahoma Counties (Scaled 0–1) 
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