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1. Spatial Data Representation and Wrangling

1 (a) Enabling and Displaying the Spatio-Temporal Pattern

To visualize the spatio-temporal pattern of earthquake and water-injection activity in
Oklahoma, both datasets were first projected into the same coordinate system to ensure spatial
consistency. The Project tool in ArcGIS Pro was used to convert OK earthquakes Project and
OK well injection_Project to NAD 1983 UTM Zone 14N, as shown in Figure 1 and Figure 2.
This projection ensures accurate measurement of distances and alignment between the two

layers, which is essential for later spatial comparison and cube generation.
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Layer Properties: OK_well_injection_Project

Figure 1. Project tool settings for OK _earthquakes Project to NAD 1983 UTM Zone 14N.
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Figure 2. Project tool settings for OK_well _injection_Project to NAD 1983 UTM Zone




After projection, the attribute table of OK earthquakes Project was examined, and the
updated Converted field was confirmed as the temporal variable. Two one-year intervals, 2013
and 2017, were chosen to illustrate changes in earthquake locations over time. The one-year
interval was selected because it provides a clear comparison of spatial distributions across
different periods while maintaining adequate temporal detail. Using Select By Attributes, records
were filtered with SQL expressions such as "updated Converted" >= DATE '2013-01-01' AND
"updated Converted" < DATE '2014-01-01" and "updated Converted" >= DATE '2017-01-01'
AND "updated Converted" < DATE '2018-01-01".

The results are displayed in Figure 3 and Figure 4. In 2013, earthquake events were
mostly concentrated in the northern and eastern regions of Oklahoma, whereas by 2017 the
activity had expanded toward the central part of the state. These changes reveal a clear spatial
expansion of seismic activity that may correspond to increased subsurface fluid-injection

operations during that period.

Lubbock
o

Figure 3. Earthquakes in 2013
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Figure 4. Earthquakes in 2017

1 (b) Identifying Fields with Missing Data

A detailed review of both datasets was conducted to identify fields containing missing or
incomplete data. In the earthquake dataset, the field nst, which represents the number of seismic
stations used to determine each event, contained several NULL values. These missing records
are visible in Figure 5. Missing nst values typically occur when small-magnitude earthquakes are

recorded by too few sensors or when station data are incomplete.

OK_earthquakes Project = OK_well_injection_Project

Field: 52 FE Selection: FE e Qgé =R= E'ZJ

2*  fime latitude | longitude depth mag magType nst gap dmin rms | net
1 2016-07-24T23:36:06.9... | 364513 | -887711| 7745 31 | ml <MNull= 59 «<Mull= | 0.59 us
2 2016-07-24T23:10:24.7... | 365866 -98.5436| 7.22 25 ml <MNull= 44 | «Null> | 0.48  us
3 2016-07-24T0%:03:15.9... | 36,1281 | -97.1018| 3499 | 25 ml <MNull= 51 «Mull= | 0.63  us
4 2016-07-24T03:59:00.4... | 36,1303 -57.0973  6&£.131 2.6 | ml <MNull= 52 | <Mull> | 0.6 us
5 2016-07-24T08:09:07.0... | 36,1281 | -97.0977 | 5922 3| ml <MNull= 51 «Mull= | 0.22  us
& 2016-07-24T04:45:17.2... | 36.8449 93,8036 | 5699 2.5 ml <MNull= 116 | <Null= | 0.48 | us
7 2016-07-24T03:08:41.0... | 36,5874 | -93.5408| 7.015| 2.9 | ml <MNull= 44 | «Null> | 0.43 | us

Figure 5. Missing values (NULL) in the nst field of OK_earthquakes Project



In the water injection dataset, the field Volume BPD contained a large number of zero
values that do not represent true measurements but rather missing or unreported injection
volumes. These pseudo-missing values are shown in Figure 6. Although technically valid
numeric entries, the zeros could bias later analyses by under-representing injection intensity.
Identifying these two problematic fields was an important step to ensure data quality before

temporal aggregation and cube construction.

= OK_earthquakes_Project £ OK_well_injection_Project X

Field: fE FE Selection: g —

Name Well_Number Operator Number Report_Date Volume_BPD Pressure API_NUM
466771 SON 22-18M-2E 15WD 20751 | 2015-07-29 00:00:00.000 0 1 4158
466772 SON 22-18N-2E “15WD 20757 | 2015-07-28 00:00:00.000 0 1 4158
466773 SON 22-18M-2E 15WD 20751 | 2015-07-27 00:00:00.000 0 1 4158
466774 S0ON 22-18M-2E “15WD 20757 | 2015-07-26 00:00:00.000 0 1 4158
466775 S0ON 22-18M-2E 15WD 20757 | 2015-07-25 00:00:00.000 0 1 4158
466776 SON 22-18N-2E “15WD 20757 | 2015-07-24 00:00:00.000 0 1 4158
466777 S0ON 22-18M-2E 15WD 20757 | 2015-07-23 00:00:00.000 0 1 4158

Figure 6. Zero (pseudo-missing) values in the Volume BPD field of

OK well injection_Project

1 (c) Fixing the Missing Data and Justifying the Approach

To address the missing and pseudo-missing values, the Field Calculator was used to
create corrected fields. For the earthquake dataset, a new field named nst fixed was added. The
Python expression “I if /nst! is None else !nst!”” was applied to replace NULL values with 1,
since every earthquake event should be recorded by at least one seismic station. The Field
Calculator setup is illustrated in Figure 7. This correction guarantees that all events maintain
valid station counts, avoiding data gaps that might affect magnitude statistics or clustering

analyses.



i OK_earthquakes Project = OK_well_injection_Project FEEI Fields: OK_earthquakes_Project ~
Field: BB FH Selection: [z o2 2 EH B H

Nst  status locationSource magSource updated_Conwerted nst_fived
4487 ll= | reviewed tul tul 1/31/2015 2:50:16 AM <Mull=
4488 ll=  reviewed tul tul 1/31/2015 25016 AM < Null=
4489 1ll=  reviewed tul tul TN4/2007 3:51:00 PM 1
4490 ll= | reviewed tul tul 1/31/2015 25015 AM < Null=
4497 1= | reviewed tul tul 1/31/2015 2250115 AM <Null=
4492 1= | reviewed tul tul 714720017 8:51:19 PM 1
4493 1= | reviewed tul tul 1/31/2015 2:50114 AM <Null=
4494 ll=  reviewed tul tul TM4/2017 8:51:36 PM 1

£ >

Figure 7. Field calculation setup for nst_fixed showing Python expression replacing NULL

values

For the water-injection dataset, a new field named Volume fixed was created to replace
unrealistic zeros in the Volume BPD field. The average injection volume, 2886.476683 barrels
per day, was calculated and substituted for zero values using the Python expression
“2886.476683 if IVolume BPD! == 0 else !Volume BPD!”, as displayed in Figure 8. Using the
mean value as a replacement preserves the dataset’s central tendency and prevents
underestimation of injection intensity caused by missing reports. Because the missing entries
were scattered randomly across both time and space, interpolation or regression would not have
produced more reliable results. This simple but robust imputation method maintains the overall

data distribution and supports consistent statistical analysis.



iz OF_earthquakes_Project #5 OK_well_injection_Project w

Field: §5 FE Selection: PE .QEE“'

Well_Number Operator Number Report_Date Volume_BPD Pressure API_NUM Volume_fixed =
113611 | "1 SWD 20585 | 2017-07-03 00:00:00.000 3043 300 3499 3043
113612 | "1 SWD 20585 | 2017-07-02 00:00:00.000 9913 300 3499 9918
113613 | "1 SWD 20585 | 2017-07-01 00:00:00.000 7322 0 3499 7322
113614 "1 SWD 20585 | 2017-06-30 00:00:00.000 0 0 3499 2886476683
113615 | "1 SWD 20585 | 2017-06-29 00:00:00.000 10450 180 3499 10450
113616 "1 SWD 20585 | 2017-06-28 00:00:00.000 G201 310 3499 G201
113617 | "1 SWD 20585 | 2017-06-27 00:00:00.000 9312 390 3499 9312
113618 "1 SWD 20585 | 2017-06-26 00:00:00.000 2540 220 3499 8540
£ >

Figure 8. Field calculation for Volume_fixed showing replacement of 0 with mean value

After these modifications, both datasets contained continuous numeric values suitable for
temporal aggregation. The cleaned datasets are now ready for the creation of space time cubes
and subsequent spatial-temporal analyses. These preprocessing steps improve data integrity,
minimize bias, and ensure compatibility between the earthquake and injection datasets for further

correlation studies.

2. Representing Spatio-Temporal Data

2 (a) Oklahoma Earthquake Space Time Data Structure

To represent the spatio-temporal distribution of earthquake events in Oklahoma, the
Create Space Time Cube by Aggregating Points tool in ArcGIS Pro was employed. The input
dataset, OK earthquakes Project, contained temporal information stored in the
updated Converted field. A space-time cube was generated as a NetCDF file
(OK _earthquakes cube.nc) with a temporal resolution of three months and a spatial grid size of

10 x 10 kilometers using the fishnet shape type. Each grid cell aggregates the mean earthquake



magnitude values occurring within its spatial boundary during each three-month period. This
configuration ensures that the dataset includes at least ten temporal slices, providing sufficient

temporal depth to capture both short-term fluctuations and long-term trends in seismic activity.

The chosen three-month interval helps smooth irregular earthquake occurrences while
maintaining enough temporal detail to detect seasonal variations. Likewise, the 10 km fishnet
grid provides an appropriate balance between spatial precision and computational efficiency. It is
fine enough to distinguish localized clusters while broad enough to avoid fragmentation of sparse
events. The resulting cube establishes a consistent framework for spatio-temporal analysis,
allowing for systematic examination of how earthquake activity has evolved across the state over

time. This structure will later support analyses such as trend detection and hot spot mapping.

As illustrated in Figure 9, the ArcGIS tool interface displays the parameter configuration
used to build the space-time cube, including the three-month interval and 10 km fishnet
aggregation. Figure 10 presents a 2D visualization of the earthquake cube. Each gray cell
represents a 10 x 10 km grid aggregated over three months, summarizing average earthquake
magnitudes throughout Oklahoma. The visualization reveals spatial clusters of higher activity in
north-central and southern regions of the state, indicating potential fault zones where earthquakes

occur more frequently.
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Figure 7. Tool setup for creating the Oklahoma earthquake space time cube
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Figure 8. Visualization of the Oklahoma earthquake space time cube in 2D



2 (b) Oklahoma Water Injection Space—Time Data Structure

A parallel space-time representation was constructed for the water injection dataset
OK well injection_Project to enable direct comparison with the earthquake data. Before
generating the cube, two key attribute fields were created to ensure correct temporal and
numerical formatting. First, a new date field named Report Date Converted was derived from
the original Report Date field to store proper date values. Second, a numeric (double) field
named Volume BPD Fixed was calculated to represent daily injection volumes as floating-point
numbers. These pre-processing steps ensured that the cube tool could interpret both temporal and

quantitative attributes accurately.

The Create Space Time Cube by Aggregating Points tool was then applied using
Report _Date Converted as the time field and Volume BPD Fixed as the summary field. Each
cube bin covered a 10 x 10 km grid cell and aggregated data at a three-month interval, consistent
with the earthquake cube. The summary statistic was set to Mean, and empty bins were filled
with zeros to preserve temporal continuity. This configuration captures both spatial distribution
and seasonal variation in injection activity while minimizing bias from missing records. The
three-month interval also corresponds to typical industry reporting cycles for injection

operations, ensuring that temporal aggregation aligns with operational patterns.

As shown in Figure 11, the parameter settings for the water injection cube mirror those of
the earthquake cube to maintain analytical consistency. Figure 12 illustrates the 2D visualization
of the water injection space-time cube. Each gray grid cell indicates the average injection volume

aggregated over three-month periods. The spatial pattern highlights major injection regions
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across northern and central Oklahoma, revealing the geographical concentration of high-volume

injection wells.

Figure 11. Tool setup for creating the Oklahoma well injection space time cube

Figure 12. Visualization of the Oklahoma well injection space time cube in 2D
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Visualization of the Oklahoma Well Injection Space-Time Cube in 2D
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The consistent design of the two space-time cubes, both with 10 km spatial resolution and
three-month temporal intervals, enables direct spatial and temporal correlation between seismic
activity and injection intensity. This balanced structure offers adequate detail for trend
identification while maintaining computational efficiency for subsequent analyses such as
emerging hot spot detection and cross-cube comparison. The uniform cube configuration ensures
that the patterns derived from both datasets can be compared meaningfully within the same

spatial and temporal framework.
3. Data Visualization
3 (a) Temporal Distribution of Earthquakes and Water Injection Records (2013-2017)

The temporal distribution of earthquake occurrences and water injection activities in
Oklahoma between 2013 and 2017 was examined to understand how both phenomena changed
over time. Figure 13 presents a histogram of earthquake occurrences by year. The figure shows
that seismic activity was relatively low in 2013 and 2014, followed by a sharp increase that
peaked in 2015 and 2016, before declining again in 2017. The overall distribution forms a
unimodal pattern centered around 2015, indicating that the middle years of the study period

experienced the highest frequency of earthquakes.

Histogram of Earthquake Occurrences by Year (2013-2017)
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Figure 13. Histogram of Earthquake Occurrences by Year (2013-2017)
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Figure 14 displays the annual frequency of water injection records over the same period.
The number of injection operations rose steadily after 2014, reaching its maximum in 2016 and
2017, and then decreased noticeably in 2018. This pattern demonstrates a period of intensified
water injection activities in the mid 2010s, consistent with an overall expansion of oil and gas

operations that relied on underground fluid disposal.

Annual Frequency of Water Injection Records (2013-2017)
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Year

Figure 14. Annual Frequency of Water Injection Records (2013—2017)

When comparing Figure 13 and Figure 14, a similar temporal trend can be observed
between the two datasets. Both the earthquake occurrences and water injection activities reached
their respective peaks around 2015-2016 and declined afterward. This resemblance in timing
suggests a potential temporal correlation between increased injection operations and higher
seismic activity during the study period. While this analysis does not establish causation, it
highlights a clear synchronization between the intensification of human-induced subsurface
activities and the rise in earthquake frequency, providing a foundation for further spatial and

statistical analyses in the subsequent sections.

3 (b) Data Clock Visualization for Earthquake Magnitude and Water Injection Rate

The data clock visualizations were produced to examine the temporal patterns of

earthquake magnitude and water injection rate in Oklahoma from 2013 to 2017. The first data
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clock, shown in Figure 135, illustrates the distribution of average earthquake magnitude over
time. The rings represent years, while the wedges represent months. Darker blue shades indicate
periods with higher mean earthquake magnitudes. The figure shows that seismic activity
increased notably in 2015 and 2016, with slightly stronger magnitudes concentrated in the
summer and early autumn months, suggesting seasonal variations in seismic behavior during the

mid-study period.

Data Clock of Earthquake Magnitude (2013-2017)
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Figure 15. Data Clock of Earthquake Magnitude (2013-2017)

The second data clock, presented in Figure 16, depicts the mean water injection rate for
the same period. Similar to the earthquake data, the rings denote years and the wedges denote
months, with darker blue tones indicating higher injection volumes. The data clock reveals that
water injection rates peaked between 2015 and 2016 and remained relatively high through 2017.
The gradual color intensification from 2014 to 2016 reflects an increasing injection activity

pattern across both time and season.

Data Clock of Water Injection Rate (2013-2017)
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Figure 16. Data Clock of Water injection Rate (2013-2017)
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When comparing the two visualizations, both exhibit elevated activity in 2015 and 2016,
suggesting a temporal overlap between higher injection rates and increased seismic magnitudes.
This synchronicity provides preliminary evidence of a potential relationship between fluid

injection intensity and regional seismic responses over time.

3 (c) Space-Time Trend Visualization for Water Injection Data

To analyze long-term spatial and temporal patterns in both earthquake activity and water
injection operations across Oklahoma from 2013 to 2017, the Visualize Space Time Cube in 2D
tool was applied to the two datasets. The input files included the earthquake space-time cube
(OK_earthquakes cube.nc) and the water injection cube (OK well injection cube.nc). For the
earthquake cube, the variable COUNT was used to represent the frequency of events within each
10-kilometer grid cell. For the water injection cube, the variable
VOLUME BPD FIXED MEAN ZEROS was selected to represent the average daily injected
volume of fluid. The Trends display theme was chosen in both cases to detect the overall

temporal changes in each location.

Each output layer was visualized using graduated color symbology based on the Trend
z-score field. The Natural Breaks (Jenks) classification method with five color classes was
applied, ranging from yellow (representing decreasing or stable trends) to red (indicating
increasing trends). The earthquake trend map (Figure 17) shows clusters of positive z-scores
concentrated in central and northern Oklahoma, suggesting areas with a consistent increase in
earthquake frequency over time. Similarly, the water injection trend map (Figure 18) reveals
strong positive z-scores in the same regions, particularly around north-central Oklahoma, where

injection volumes have significantly increased.
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Figure 17. Space-Time Trend Visualization of Earthquake Frequency in Oklahoma (2013-2017)
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Space-Time Trend Visualization of Water Injection Rate in Oklahoma (2013-2017)
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Figure 18. Space-Time Trend Visualization of Water Injection Rate in Oklahoma (2013-2017)
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The spatial overlap of upward trends in both injection rate and earthquake frequency
highlights a potential relationship between increased wastewater injection activity and elevated
seismic occurrences. These findings visually reinforce the temporal correlation between
human-induced subsurface fluid injection and the surge in earthquake events observed during the

mid-2010s.
3 (d) Time Series Pattern Analysis

The selected study area focuses on Central Oklahoma, which includes Oklahoma City
and surrounding counties, an area recognized for significant induced seismicity between 2013
and 2017. Figure 19 shows the monthly variation of mean earthquake magnitude derived from
the layer EQ CentralOK Selected. The time series reveals relatively stable and low magnitudes
from 2013 to 2015 (around 2.8-3.0), followed by a sharp increase in 2016 and 2017, when
several events exceeded magnitude 4. This pattern indicates a notable escalation of seismic

activity in the later years.

Time Series of Earthquake Magnitude in Central Oklahoma
(2013-2017)

Mov 2013 MNov 2014 MNov 2015 Mov 2016 MNov 2017

Aean Earthquake Magnitude

Year
Figure 19. Time Series of Earthquake Magnitude in Central Oklahoma (2013-2017)

Figure 20 displays the average monthly water injection rate extracted from

Injection_Central OK_ Selected. From 2013 to 2014, the injection rate exceeded 20,000 barrels
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per day but decreased steadily through 2015 and dropped sharply around mid-2016, remaining at
a low and stable level thereafter. Comparing the two charts, a negative temporal relationship can
be observed: while the injection rate declined significantly after 2015, the earthquake magnitude
increased during 2016 and 2017. This inverse trend suggests that changes in injection practices
may have altered subsurface stress conditions, contributing to short-term fluctuations in seismic

activity.

Time Series of Water Injection Rate in Central Oklahoma
(2013-2017)
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Figure 20. Time Series of Water Injection Rate in Central Oklahoma (2013-2017)

4. Calculating earthquake risk in 2010.

4 (a) Select and merge all data sources for 2010 at the census tract level

To prepare the data for the earthquake risk analysis in 2010, all datasets were first
projected to a consistent coordinate system, NAD 1983 UTM Zone 14N, to ensure spatial
alignment. The datasets included four major layers: earthquake occurrences, water injection
wells, school locations, and traffic volume points. Each dataset was clipped to the boundary of
the Oklahoma census tracts using the Clip tool, with the 2010 census tract layer
(census _tracts10 Project) serving as the boundary polygon. This step ensured that all data were
restricted to the official study area and shared identical spatial extents.

After clipping, each thematic dataset was aggregated to the census tract level using the

Spatial Join tool. The join operation was set to One-to-one with the Intersect match option,
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allowing point features to be summarized within their respective census tracts. For the
earthquake layer, the number of earthquake events and the mean earthquake magnitude were
calculated. For the school layer, the number of schools per tract was summarized. The traffic
layer was processed to obtain the mean traffic volume for each tract, and the water injection layer
was used to compute the mean daily injection rate. These spatial joins resulted in intermediate
layers named Tract EQ Joined, Tract School Joined, and Tract Traffic Joined.

Finally, all layers were merged into a single integrated dataset named
OK Census2010 Integrated, which contains the summarized attributes for each census tract in
Oklahoma. This layer represents the foundational dataset for subsequent analysis of earthquake
risk in 2010. The final integrated map of Oklahoma census tracts is shown in Figure 21, which
displays the complete spatial coverage of the study area and confirms that all integrated data fall

within the state boundary.
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Figure 21. Integrated Census Tracts and Thematic Data in Oklahoma (2010)
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4 (b) Defining Scaled Indices for Each Variable

To normalize all variables and allow meaningful comparison across different magnitudes,
a scaled index was defined for each dataset using the standard formula (value — minimum)
divided by (maximum — minimum). The attribute table of the integrated dataset named
OK Census2010 Integrated was opened, and five new fields were created in sequence with the
data type set to Float. These new fields were Pop_Index, Traffic Index, EQ Index,
School Index, and Injection Index, representing the normalized ratios of population, traffic

count, earthquake frequency, school count, and injection volume, respectively (Figure 22).

o Pop_Index Pop_Index Float
o Traffic_lndex Traffic_Index Float
o EC Index EQ Index Float
o School_Index School_Index Float
o Injection_lndex Injection_lndex Float

Figure 22. Newly added index fields in the attribute table of OK_Census2010 Integrated
To determine the value ranges required for standardization, the Summary Statistics tool

was applied to the integrated table with five selected variables: P0010001, Traffic_Count,
EQ Count, School Count, and Volume BPD Fixed. Both minimum and maximum statistics
were calculated for each variable, and the resulting output table, named OK FieldStats,
summarized the minimum and maximum values used in the subsequent normalization process.
The results indicated that the minimum and maximum of PO010001 were 31 and 12083, the
minimum and maximum of 7raffic_Count were 0 and 78658, the minimum and maximum of
EQ Count were 0 and 133, the minimum and maximum of School Count were 0 and 8, and the

minimum and maximum of Volume BPD Fixed were 0 and 12000 (Figure 23, Table 1).
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Field: [ Add [ Calculate Selection: Cfg Select By Attributes 2 Switch Rows: [ Insert v

OBJECTID * FREQUENCY MIN_Traffic_Count MAX_Traffic Count MIN_EQ Count MAX_EQ_Count MIN_School_Count MAX_School_Count MIN_P0010001 MAX_P0010001 MIN_Volume_BPD_Fixed MAX Volume_BPD_Fixed
11 1046 0 78658 0 133 o] 8 31 12083 0 12000

Click to add new row.

Figure 23. Summary Statistics tool interface showing selected fields and output table
OK_FieldStats.

Using these reference values, each of the five new index fields was calculated with the
Field Calculator tool by entering the appropriate Python expressions. For the population, the
expression was written as “(!P0010001! —31.0) / (12083.0 — 31.0)” to scale the population
variable between 0 and 1. Similarly, traffic count was calculated as “(!/Traffic_Count! — 0.0) /
(78658.0 — 0.0)”, earthquake frequency was calculated as “(/EQ _Count! — 0.0) / (133.0 — 0.0)”,
and school count was calculated as “(/School_Count! — 0.0) / (8.0 — 0.0)”. The injection volume
required special handling due to the presence of Null values in the original data. To avoid
calculation errors, a Python function was written within the Field Calculator using a code block
that first checked whether the input value was None. If it was not None, the formula “(value —
0.0) / (12000.0 — 0.0)” was applied to calculate the Injection Index; otherwise, the field was set

to Null.
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After applying all expressions, the resulting index values were examined and confirmed
to fall within the range of 0 to 1, representing the relative proportion of each variable within the
study area. Records with missing injection data were automatically assigned Null values, which
did not affect subsequent analyses. This process successfully produced five standardized indices
that provide a consistent basis for the construction of the composite index in the following step

(Figure 24).

Pop_Index Traffic_Index EQ _Index School_Index Injection_Index

0.372884 0| 018797 0.625 < MNull=
0.179887 0| 0.142857 H = Mull=
0.384252 0.367884 | 0.330827 0.625 H

0.60156 0.024918 | 0.135338 H H

0.692665 0.021053 | 0.150376

=}

0.357368 0207086 | 018797 0.25 H
0.636658 0.060019 | 0.255639 0.125 0.01475
Figure 24. Resulting standardized index values for population, traffic, earthquake, school, and

injection variables.

4 (c) Define the final risk index by adding all the indexes computed in the previous step.

The final risk index was designed to represent the overall exposure level of each census
tract by integrating five standardized indicators derived in the previous step: population density
(Pop_Index), traftic volume (7raffic_Index), earthquake frequency (EQ_Index), school density
(School_Index), and water injection volume (/njection_Index). A new floating-point field named
Final Risk Index was added to the attribute table of OK Census2010 Integrated, with six
decimal places to ensure sufficient precision. The calculation was performed using the Field
Calculator in Python mode, applying a custom function that summed all available indices while

automatically excluding any null values.
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The Python expression used was calc_final(!Pop_Index!, !Traffic Index!, |EQ Index!,
ISchool Index!, !Injection Index!).
The corresponding code block was defined as follows:
def calc_final(p, t, e, s, i):
vals = [v for v in [p, t, e, s, i] if v is not Nonel
if len(vals) == 0:
return None

else:

return sum(vals) / len(vals)

This function ensured that missing data did not cause computational errors and that the
resulting risk index remained scaled between 0 and 1. After running the calculation, the resulting
Final Risk Index values ranged approximately from 0.02 to 0.52. Higher index values represent
census tracts that experience greater combined exposure to human activity and potential

environmental stressors.

Figure 25 illustrates the spatial distribution of the final risk index across Oklahoma. The
map employs a graduated color ramp ranging from light yellow (lowest risk) to dark red (highest
risk). The results show that areas located in northern and central Oklahoma tend to have
relatively higher risk values, while peripheral regions exhibit lower overall exposure. This
composite risk visualization provides a comprehensive overview of spatial vulnerability patterns

across the state, integrating demographic, infrastructural, and environmental factors.
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