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a. Introduction

The purpose of this project was to analyze spatial patterns in water depth across the Gulf
of Mexico oil and gas platforms and to evaluate the performance of different spatial interpolation
techniques in predicting depth values. The study area encompassed the central and northern Gulf
of Mexico, including offshore regions near Louisiana, Texas, and Mississippi, as shown in
Figure 1. Study Area — Gulf of Mexico Oil and Gas Platforms. The primary objective was to
process the available platform depth data, apply statistical transformations to improve
distributional characteristics, and compare two interpolation methods, Inverse Distance
Weighting (IDW) and Simple Kriging, against each other and against the NOAA U.S. Coastal
Relief Model bathymetric dataset. A combination of GIS-based geoprocessing and geostatistical
modeling was employed, culminating in the creation of detailed predictive depth maps and

comparative error analyses.
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Figure 1. Study Area — Gulf of Mexico Oil and Gas Platforms



b. Data and Data Processing

The original dataset consisted of platform locations and water depth measurements in

feet, projected in WGS 1984 (ITRF00). For spatial analysis accuracy, the data were reprojected

to NAD 1983 UTM Zone 15N to align with the NOAA bathymetric raster and facilitate precise

distance-based interpolation.

Dataset

Description

Data Source

Oil_and Natural Gas Platform

A dataset comprising point features
representing the locations of oil and
natural gas drilling platforms situated
along the coastal regions of the
United States.

United States
Department of

Homeland Security
(DHS)

Remotely Sensed Bathymetric
Data for the Gulf of Mexico

Bathymetric data for the Gulf of
Mexico obtained through remote
sensing, sourced from the Gulf of

Gulf of Mexico
Coastal Ocean
Observing System

Mexico Coastal Ocean Observing (GCOOS)

System (GCOOS).
U.S. Coastal Relief Model Vol. 4 | Comprehensive offshore bathymetry | Download NetCDF
- Central Gulf of Mexico and topography dataset covering the | File (NOAA
(NetCDF) central Gulf of Mexico, integrating National Centers

multibeam bathymetry, hydrographic
surveys, and trackline bathymetry.
Downloaded as NetCDF format from
NOAA NCEL

for Environmental
Information)

Table 1. Dataset Description

Erroneous and null depth entries, including values of -999 and 0, were removed to ensure

data integrity. Depth values were converted from feet to meters by multiplying by 0.3048, and a

new field, Water Depth (m), was added to the attribute table. Initial exploration of the water

depth distribution revealed a strong right skew, with a mean of approximately 35.88 m and a

median of 17.37 m, as well as a large standard deviation of 115.91 m, indicating the presence of
extreme deep-water outliers. To address the skewness, a log base-10 transformation was applied,

producing the LOG_WDEPTH variable. The resulting distribution, illustrated in Figure 2.



Distribution of LOG_WDEPTH, was more symmetric, with a mean of 1.28, median of 1.24, and
standard deviation of 0.40, thereby improving suitability for geostatistical modeling.
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Figure 2. Distribution of LOG_WDEPTH

c. Methods

Two interpolation techniques were selected for analysis. Simple Kriging was chosen for
its ability to incorporate spatial autocorrelation and provide estimates of prediction uncertainty,
making it valuable for evaluating confidence in spatial predictions. A first-order polynomial
trend analysis was also performed to model large-scale depth gradients before interpolation, and
residual maps were generated to highlight local deviations from the trend surface (Figure 3.
Residual Map of Log Water Depth). IDW was selected as a deterministic method that is
computationally efficient and capable of producing smooth predictions while heavily weighting
nearby observations. This made it suitable for comparison against Kriging in terms of precision
and bias. Both methods were applied to the log-transformed depth values, and results were
back-transformed to meters for comparison with NOAA’s DEM. Cross-validation was used to

quantify prediction accuracy, with mean error and root mean square error (RMSE) calculated for



each technique. For NOAA data integration, the U.S. Coastal Relief Model Vol. 4 for the central
Gulf of Mexico was obtained as a NetCDF file, projected into NAD 1983 UTM Zone 15N,
resampled to match the interpolation raster resolution, and converted to meters for direct

comparison.
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Figure 3. Residual Map of Log Water Depth
Prior to conducting the interpolation analyses, a first-order trend surface model of the
log-transformed water depth was generated to examine large-scale spatial patterns across the
Gulf of Mexico. This preliminary step allowed for the identification of broad depth gradients and

provided insights into the regional bathymetric structure before applying localized interpolation



methods. The trend surface map (Figure 4. First-Order Trend Surface of Log Water Depth in the
Gulf of Mexico) revealed a clear north-south gradient in water depth, with shallower areas
concentrated along the continental shelf and deeper zones extending toward the central and
southern Gulf. This understanding informed the interpretation of residuals and improved the

assessment of model performance in later stages of the analysis.
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Figure 4. First-Order Trend Surface of Log Water Depth in the Gulf of Mexico



d. Results

The IDW interpolation produced predictions that closely matched observed values, with a
mean prediction error of -0.0045 and an RMSE of 0.0697, as shown in Figure 5.
LOG WDEPTH IDW _CV _Predicted vs Measured and Figure 6.
LOG WDEPTH IDW CV Distribution. The predicted and measured distributions were nearly
identical, and errors were centered near zero with no systematic bias across the depth range
(Figure 7. LOG _WDEPTH IDW CV Error). Simple Kriging predictions are also closely
aligned with measured values, with a mean prediction error of 0.0061 and an RMSE of 0.0880,

as seen in Figure 8. LOG WDEPTH Simple Kriging CV Prediction Predicted vs Measured.
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Figure 5. LOG WDEPTH IDW CV Predicted vs Measured
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Figure 8. LOG_WDEPTH Simple Kriging CV Prediction Predicted vs Measured
The Kriging-predicted distribution (Figure 9.
LOG WDEPTH Simple Kriging CV Prediction Distribution) matched the observed
distribution well, though slight deviations appeared near secondary peaks. The normal Q-Q plot
(Figure 10. LOG_WDEPTH Simple Kriging CV_Prediction_Normal QQ Plot) confirmed that

Kriging residuals largely met the normality assumption, except at the extreme tails.
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Figure 10. LOG_WDEPTH Simple Kriging CV_Prediction Normal QQ Plot
Both techniques produced maps showing spatial depth variation across the Gulf (Figures
11 and 12, IDW Prediction of LOG_WDEPTH and Simple Kriging Prediction of
LOG _WDEPTH), with Kriging additionally providing a standard error map for uncertainty

visualization (Figure 13. Simple Kriging Standard Error of LOG_WDEPTH).
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Figure 11. IDW Prediction of LOG_WDEPTH
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Figure 12. Simple Kriging Prediction of LOG_WDEPTH

11



12

Jackson
o]

Simple Kriging Stail.,ndard Error of.l:OG_WDEPTH (m)
N } e :

Louisiana

Austi
b

onio

Gulf of Mexico Oil and Gas Platforms
Prediction Standard Error (log10 meters)
Filled Contours

LT Glsisost - E0e.
LOG—WDEPTH—SIm 0.15819081 - E 0.43387906 -
Filled Contours 0.21338756 0.53047726
e Ol : At
0.27687348 - 0.6415821 - 0.7381803
011030094 T o34m0 Nobts

4 Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c)
0 45 90 180 Miles OpenStreetMap contributors, and the GIS User Community, Esri,
Lp Oy S N USGS

Mérida

Figure 13. Simple Kriging Standard Error of LOG_WDEPTH
Comparisons against NOAA’s DEM revealed distinct spatial patterns in depth
differences. The IDW-NOAA difference map (Figure 14. Difference in Depth: IDW — NOAA)
showed relatively small deviations, with most of the study area falling within +50 m of NOAA
values. The Kriging—NOAA difference map (Figure 15. Difference in Depth: Kriging — NOAA)

indicated larger discrepancies in certain deep-water regions, with differences exceeding 500 m in



isolated areas. Summary statistics (7able 2. Error Statistics for Bathymetric Depth Estimation

Methods) showed that IDW achieved the smallest bias (-0.17 m) and lowest standard deviation

13

(1.69 m) compared to observations, outperforming both Kriging (-2.57 m bias, 63.08 m std. dev.)

and NOAA (-0.55 m bias, 5.85 m std. dev.).
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Figure 14. Difference in Depth: IDW — NOAA
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Figure 15. Difference in Depth: Kriging — NOAA
Method Mean Error (m) | Std. Deviation (m) | Min Error (m) | Max Error (m)
NOAA -0.55 5.85 -256.06 186.67
Kriging -2.57 63.08 -2044.61 511.16
IDW -0.17 1.69 -43.78 19.29

Table 2. Error Statistics for Bathymetric Depth Estimation Methods
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e. Discussion

The results indicate that IDW was the most precise method for this dataset, producing
low bias and consistent predictions across the Gulf of Mexico platforms. Kriging’s inclusion of
spatial autocorrelation and ability to provide standard error maps is advantageous for
understanding prediction uncertainty, but its performance was hindered by larger deviations in
certain deep-water areas. NOAA’s DEM aligned well with observations in general but showed
less agreement than IDW. One limitation of the analysis is the inherent spatial bias in platform
distribution, with denser sampling in shallower waters near shore and sparser coverage offshore.
This spatial clustering may have influenced interpolation accuracy, particularly for Kriging,
which depends heavily on the spatial structure of the input data. Additionally, while the log
transformation improved model performance, it assumes a consistent multiplicative error
structure, which may not fully capture depth variability in heterogeneous bathymetric
environments. Future work could integrate additional bathymetric datasets, explore anisotropic
variogram models for Kriging, and assess hybrid approaches that combine deterministic and
geostatistical methods.
f. Appendix

Chenyi Weng took the lead in data preprocessing, projection transformations, log
transformation of depth values, and executing the IDW interpolation analysis, as well as
preparing the majority of the visualizations, including distribution maps and NOAA DEM
difference outputs. Monica Delgado contributed by performing the Simple Kriging interpolation,
generating the trend surface and residual maps, and assisting with the statistical cross-validation.
Both authors collaborated closely on interpreting the results, composing the discussion, and

refining the final report.
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