Utilizing Python in GIS for Spatial Analysis of Travel Habits

Chenyi Weng

SSCI586 - GIS Programming and Customization
Professor Jennifer N. Swift

September 29th, 2024

1. Introduction

The objective of this project was to explore the fundamentals of programming with
Python in GIS, specifically using ArcPy in ArcGIS Pro to manipulate spatial and tabular data.
The workflow includes importing CSV files, converting them into spatial data, and analyzing
travel habits based on latitude zones. By combining Python scripting with geoprocessing tools,
this project aimed to understand author’s travel preferences by plotting visited cities and
performing spatial analysis.
2. Study Area

The study area for this project encompasses 20 cities worldwide that were visited. These
cities span across different continents and various climate zones, allowing for an analysis of
travel habits in relation to geographic locations. The map generated in ArcGIS Pro (Figure 1)

illustrates the distribution of these cities across the globe.

Study Area

ARCTIC ARCTIC

N
OCEAN OCEAN
W —
S

NORTH
AMERICA

uuuuuu
ASIA
NORTH
NORTH
NORTH
ATLANTIC
PACIFIC
PACIFIC .
OCEAN
OCEAN
OCEAN

AFRICA

;;;;;;

- INDIAN
SOUTH AUSTRALIA
SOUTH OCEAN
PACIFIC
ATLANTIC
OCEAN
OCEAN

SOUTHERN

OCEAN

0 500,000 2,000 3,000 4,000 ANTARCTICA
- e s \liles

Esri, TomTom, FAO, NOAA, USGS, Esri, USGS

Figurel. Global Study Area Map of Visited Cities

3. Data and Data Processing

The dataset used for this project consists of a CSV file containing 20 cities' names along
with their respective latitude (y) and longitude (x) coordinates. These coordinates were manually
gathered using Google Maps and structured into three fields: city name, latitude, and longitude.
The original projection of this data was in WGS 84 (EPSG:4326), which is the standard
geographic coordinate system used for most latitude and longitude data.

After verifying the CSV's readability and accuracy using pandas in Python, the data was
imported into ArcGIS Pro using ArcPy. The CSV was then converted into a point feature class
using the XYTableToPoint tool. The data was spatially referenced in WGS 84 to maintain

consistency with the original projection.

o [11 import csv
data = [

["Seol, South Korea", "37.547342589652274", "126.98511144648732"],
["MNagoya, Japan", "35.174518528584854", "136.9063837249868"],
["0saka, Japan", "34.67164118765276", "135.4977866541952"],
["Tokyo, Japan", "35.68503678612925", "139.7671247135716"],
["Meuschwanstein Castle, Germany", "47.5577694601196", "10.749746752837519"],
["Luxembourg", "49.62169144841758", "6.124901815608386"]1,
["Jungfraujoch, Switzerland", "46.537461966197725", "7.963754"],
["Times Square, New York, USA", "48.75825098254559", "-73.98557478981621"],
["Harvard University, Boston, USA", "42,37597918680261","-71.11889237548384"],
["Niagara Falls, Canada", "43.88B2957218787534", "-79.87415217436512"],
["Taipei 101, Taipei, Taiwan", "25.033898210302947", "121.564506709616"],
["Spatial Sciences Institute, Los Angeles, USA", "34.81939171286854", "-11B.28484395790841"],
["Petronas Towers, Kuala Lumpur, Malaysia", "3.157584957987343", "101.7115455019845"],
["Sabah, Malaysia", "5.437770891464025", "116.78697062549274"],
["Universal Studios, Singapore", "1.2542317863356991", "163.82382785086752"],
["Jinli, Chengdu, China", "30.668787244747738", "184.8563049062817"],
["Beijing, China", "39.906420928722554", "116.46216037899852"],
["Hong Kong", "22.326601365972223", "114.169596602277512"1],
["Shanghai, China", "31.242716667012893", "121.44647926869122"],
["Hangzhou, Zhejiang, China", "38.2918838B667552", "120.202648086438426"],

with open('locations.csv', 'w', newline='"', encoding='utf-8') as csvfile:
writer = csv.writer{csvfile)
writer.writerow(['location', 'y', 'x'l)
writer.writerows(data)

print(“travel_locations.csv"}

S travel_locations.csv

Figure 2. CSV Data Verification in Python

4. Method
4.1 CSV Creation

Latitude and longitude data were manually gathered from Google Maps for the visited
cities. These coordinates were saved into a CSV file, structured with fields for the city name,
latitude (y), and longitude (x).
4.2 Python Script to Import Data

A Python script using ArcPy was written to import the CSV file into ArcGIS Pro and
convert it into a point layer (Figure 3). This process involved using XYTableToPoint to create
point features from the coordinates.

import arcpy

Set the workspace

workspace = r'C:\Users\wengchen\Desktop\Project2'
arcpy.env.workspace = workspace
arcpy.env.overwriteQutput = True

Path to the CSV file
csv_file = r'C:\Usersiuwengchen\Desktop\Project2\travel locations.csv’

Define the output point feature class
output_feature_class = r'C:\Usersiwengchen\Desktop\Project2\travel locations_points.shp'

Set the spatial reference (WGS 84, EPSG 4326)
spatial_reference = arcpy.SpatialReference(4326)

Use the XY Table To Point tool to convert the CSV to a point Layer
I use 'x' for longitude and 'y' for latitude based on my CSV structure
arcpy.management.XYTableToPoint{csv_file, output_feature class, "x", "y", coordinate_system=spatial reference)

print(f"CSV has been successfully converted to a point layer: {output_feature_class}”)

C5V has been successfully convlr‘ted to & peint layer: C:\Users‘wengchen‘\Desktop\Project2itravel locaticns_points.shp

Figure 3. CSV Import and Point Feature Creation in ArcGIS Pro
4.3 Latitude Zone Classification
The cities were categorized into latitude zones—Tropical, Temperate, and
Polar—based on their latitudes. A Python script was used to classify the cities, and the results

were stored as an additional field in the attribute table (Figure 4 and Figure 5).

Add a new field to store Llatitude zone classification
arcpy.management.AddField(point_layer, "LatZone™, "TEXT")

Classify the latitude zones (Tropical, Temperate, Polar) and update the attribute table
with arcpy.da.UpdateCursor(point_layer, ['location’', "SHAPE@Y', 'LatZone’']) as cursor:
for row in cursor:
city, lat, zone_field = row
if lat »= -23.5 and lat <= 23.5:

row[2] = 'Tropical’

elif lat » 23.5 and lat <= 66.5:
row[2] = 'Temperate'

else:
row[2] = 'Polar’

cursor.updateRow(row)

print("Latitude zones have been classified and saved to the attribute table."”)

Latitude zones have been classified and saved to the attribute table.

Figure 4. Latitude Zone Classification Code

iz travel_locations.csv travel_points

Field: §F] Add [E Calculate Selection: [ggSelect By Attributes T2 Switch
ﬂ Shape location y X DistMiles LatZone

110 Point | Seol, South Korea 37.547343 | 126985111 921.453062 | Temperate

2 |1 Point Magoya, Japan 35174511 136.906384 | 1151.598289 | Temperate

3 |2 Point | Osaka, Japan 34671641 | 135497707 | 1066.037701 | Temperate

4 |3 Point | Tokyo, Japan 35685037 139.767125 | 1307.601189 | Temperate

5 |4 Point | Meuschwanstein Castl.. |47.557769 10.749747 5841.775786 | Temperate
6 |5 Point Luxembourg 49621691 6124902 5940.214645 Temperate
7 & Point | Jungfraujoch, Switzerl... | 46.537462 7.963754 | 5990.213657 | Temperate
a |7 Point Times Square, Mew Yor... | 40758251 -73.985575 7782.613115 | Temperate
9 |3 Point | Harvard University, Bo... | 42375979 -71.118092 7709.452696 | Temperate
0|9 Point | Miagara Falls, Canada 43082957 | -79.074152 | 7550.767121 | Temperate
11 |10 | Point | Taipei 101, Taipei, Taiw... | 25033898 | 121.564507 0.000023 | Temperate
12 | 11 | Point | Spatial Sciences Instit... | 34019392 | -113.284844 | &776.277611 Temperate
13 |12 | Point | Petronas Towers, Kual... 3157535 | 101711546 | 2006.945707 | Tropical

14 13 | Point S5abah, Malaysia 5437771 | 116,786971 | 1390.478974 | Tropical

15 14 | Point | Universal Studias, Sin... 1.254232 | 103.823828 | 2024.784393 | Tropical

16 |15 Point Jinli, Chengdu, China 30660787 104.056305 1136.471955 Temperate

17 | 16 | Point | Beijing, China 39906421 11640216 | 1070.211114 | Temperate
18 17 Point Hong Kong 22326601 | 114169596 503.809663 Tropical
19 |18 | Point | Shanghai, China 31.242717 | 121446479 | 429047946 Temperate

20 |19 | Point | Hangzhouw, Zhejiang,... | 30297034 120.2026438 | 372.662355 | Temperate

Figure 5. The attribute table for “travel points”

4.4 Distance Analysis

The distances from each city to Taipei (the home city) were calculated using the

Haversine formula; also, this Python function calculated the distances in both kilometers and

miles. However, the results were added as new fields in the attribute table (Figure 6).

import math

Taipei's coordinates
25.833898
121.564587

taipei_lat
taipei_lon

Point Layer generated from your C5V data
point_layer = r'C:\Users\wengchen\Desktop\Project2\travel_locations_points.shp’

Define the Haversine function to calculate distance in kilometers
def haversine(latl, lonl, lat2, lon2):

R = 6371

-8

Radius of Earth in kilometers

dlat = math.radians(lat2 - latl)

dlon = math.radians(lon2 - lonl)

a = math.sin(dlat / 2)**2 + math.cos(math.radians(latl)) * math.cos(math.radians(lat2)) * math.sin(dlon / 2)**2
€ = 2 * math.atan2(math.sgrt(a), math.sgrt(1l - a))

=R ™*c

distance

return distance

Calculate distance from Taipei to each city in the point Layer
with arcpy.da.SearchCursor(point_layer, ['location’, 'SHAPE@XY']) as cursor:
for row in cursor:
city, (lon, lat) =
distance_km = haversine(taipei_lat, taipei_lon, lat, lon)

row

Convert km to miles
distance_miles = distance_km * ©.621371 # 1 km = 8.621371 miles

Print both kms and miles
print(f"Distance from Taipei to {city}: {distance_km:.2f} km ({distance_miles:.2f} miles)™)

Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

Taipei
Taipei
Taipei
Taipei
Taipei
Taipedi
Taipedi
Taipedi
Taipedi
Taipedi
Taipei
Taipei
Taipei
Taipedi
Taipedi
Taipedi
Taipedi
Taipedi
Taipei
Taipedi

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

Seol, South Korea: 1482.94 km (921.45 miles)

Magoya, Japan: 1853.32 km (1151.68 miles)

Osaka, Japan: 1715.62 km (1866.84 miles)

Tokyo, Japan: 2184.38 km ({1387.6€ miles)

Neuschwanstein Castle, Germany: 9481.43 km (5841.78 miles)
Luxembourg: 9559.85 km (5948.21 miles)

Jungfraujoch, Switzerland: 9548.33 km (5998.22 miles)

Times Square, New York, USA: 12524.21 km (7782.61 miles)

Harvard University, Boston, USA: 12487.17 km (7789.45 miles)
Niagara Falls, Canada: 12151.79 km (7558.77 miles)

Taipei 181, Taipei, Taiwan: 8.88 km (8.88 miles)

Spatial Sciences Institute, Los Angeles, USA: 18%85.37 km (6776.28 miles)
Petronas Towers, Kuala Lumpur, Malaysia: 3229.87 km (2885.55 miles)
Sabah, Malaysia: 2237.76 km (13%8.48 miles)

Universal Studios, Singapcre: 3258.58 km (2824.78 miles)

Jinli, Chengdu, China: 1828.97 km (1136.47 miles)

Beijing, China: 1722.34 km (1878.21 miles)

Hong Kong: 818.8@ km (582.81 miles)

Shanghai, China: 69©.49 km (429.85 miles)

Hangzhou, Zhejiang, China: 559.74 km (372.606 miles)

Add the DisMiles field to attribute table
arcpy.management.AddField(point_layer, "DistMiles", "DOUBLE")

Update the attribute table with the distance values in miles
with arcpy.da.UpdateCursor(point_layer, ['location’, "SHAPE@XY',
for row in cursor:
city, (lon, lat), distance_field = row
distance_km = haversine(taipei lat, taipei lon, lat, lon)
distance_miles = distance_km * 8.621371
row[2] = distance_miles # Update DistMiles field
cursor.updateRow(row)

print("Distance in miles has been saved to the attribute table.")

Distance in miles has been saved to the attribute table.

'DistMiles®]) as cursor:

Figure 6. Distance Calculation Using Haversine Formula
5. Results Visualization
After completing the workflow, the spatial data was analyzed to understand the travel
habits. The final map (Figure 7 and Figure 8) indicates that most of the travel occurred within the
Temperate Zone, aligning with a preference for visiting cities with moderate climates.

Furthermore, the Tropical Zone was the second most visited, while no cities in the Polar Zone

were visited.

Project? | £ Command Search (Alt+Q wengchen_USCSS! - Spatial Sciences Institute ¥ (1 7 - X
Project Map Insert Analysis View Edit Imagery Share Help Table Standalone Table
- - = | o QS QS -
Cut @ 1 O 4 & addGraphicslayer | [Y] [[Attributes ﬂﬁ <] £l Pause &} Lock iF= Sync
D -©- LY () ket =
v S L ! @en [““ = El Cle Mil 5o O = (i3 View Unplaced L) Remove
Paste = P Explore 75 ¥ Bookmarks Go | Basemap Add Select SelectBy SelectBy - Measure Locate Infographics Coordinate | X P Convert | Download 0 °
v Copy Path v &« - To XY v Datav ~ Attributes Location ~ - v Conversion | (@ More « v Map v
Clipboard Navigate F] Layer Selection 51 Inquiry Labeling 5 Offline [E] ~
Contents v & x [E]Map X [0 NewNotebook [Map_Result Layout [E3] Study Area Layout ¥ Catalog v X
T [Search o v ‘ Project Portal Computer Favorites =
=G0 FE_ & Py Search Project
NORTH)
PEUROPE & Maps
Drawing Order AMERICAS | 47 AR b
' 5 e = Toolboxes
“Elmsp il o @l Notebooks
4[] travel_points &I Databases
LatZone AFRICA e} 5 Layouts
t Temperate ¥ if =
€2 Styles
1 Tropical SEmeT
[v] Charted Territory AMERICA 4 i Folders

(v] World Hillshade

4 Standalone Tables

[travel_locations.csv

ANTARCTICA

1:179,035,83 - || B B 2%
[EH travel_locations.csv m

4 N{‘ v 134.0425447°W 82.1276544°S v

AUSTRALIA

4

& Project

& Project2.gdb
backups
{ipynb_checkpoints
GpMessages
ImportLog

B Project2atbx

(=) travel_locations_points.shp

B travel locations.csv

Field: [Add [Calculate Selection: Ui Select By Attributes 5 Switch New Notebook (1).ipynb
FID Shape location y x DistMiles LatZone New Notebook.ipynb

1 Io— Point | Seol, South Korea 37.547343 | 126985111 921453062 Temperate #1 Locators

2 1 Point Nagoya,lapan 35174511 136906384 1151598289 Temperate

3 2 | Point Osaks, Japan 34671641 135497707 1066037701 Temperate

4 3 |Point Tokyo, Japan 35.685037 139767125 1307.601189 Temperate

5 4 |Point | Neuschwanstein Castl.. |47.557769 10749747 5841775786 Temperate

6 5 | Point Luxembourg 49621691 6124902 5940214645 Temperate

7 16 Point | Junafraujoch, Switzerl... | 46.537462 7.963754 | 5990.218657 ' Temperate

gals P 0of 20 selected Filters: - + 100% =

Figure 7. The Final Map Analysis Interface

ARCTIC ARCTLC

0CEAN OCEAN
AT, f, 9 EUROPE
AMERICA : B
T . ? 3 B g ASIA
’ NORTH - : .]
: b3 NORTH
NORTH ’ . i X "t
ATLANTIC ; . !
L : ! i PACIFI
PACIFIC L s
OCEAN ot ’
. s OCEAN
OCEAN :
JAFRICA
i g
T.
N ;
SOUTH
| AMERICA
\ pras ek : INDIAN
SOUTH AUSTRALIA
SOUTH OCEAN
PACIFIC
ATLANTIC
OCEAN
; ——_ Legend
travel_points
SOUTHERN LatZone
OCEAN - “Témperate
? Tropical
0 1,250 2,500 5,000 Miles ANTARCTICA

L I 1 I | ! 1 1 |

Esri, TomTom, FAO, NOAA, USGS, Esri, USGS

Figure 8. Final Map Categorizing Cities by Latitude Zones
6. Discussion
The results of this project revealed clear trends in travel preferences, which are biased
toward temperate cities. This analysis offers valuable insights into how geographic and climate
factors influence travel choices. Moreover, the limitations of this analysis include the small
sample size of cities and the manual collection of geographic coordinates, which may introduce

minor inaccuracies.

Additionally, this workflow could be reused to analyze future travel data or adapted for
different geographic analysis tasks. For example, the code could be expanded to include
population or economic data for each city, offering deeper insights into other factors influencing

travel habits.

References
What is the data access module (available at https://pro.arcgis.com/en/pro-
app/arcpy/data-access/what-is-the-data-access-module-.htm).
XY Table to Point (Data Management) (available at https://pro.arcgis.com/en/pro-
app/tool-reference/data-management/xy-table-to-point.htm).

Zandbergen, P. (2024). Python Scripting for ArcGIS Pro. Chapters 6—11.

